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PSEUDO P -CLOSURE WITH RESPECT TO IDEALS IN

PSEUDO BCI-ALGEBRAS†
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Abstract. In this paper, for any non-empty subsets A, I of a pseudo BCI-

algebra X, we introduce the concept of pseudo p-closure of A with respect to

I, denoted by Apc
I , and investigate some related properties. Applying this

concept, we state a necessary and sufficient condition for a pseudo BCI-

algebra 1) to be a p-semisimple pseudo BCI-algebra; 2) to be a pseudo

BCK-algebra. Moreover, we show that Apc
{0} is the least positive pseudo

ideal of X containing A, and characterize it by the union of some branches.
We also show that the set of all pseudo ideals of X which Apc

I = A, is a

complete lattice. Finally, we prove that this notion can be used to define

a closure operation.
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1. Introduction

The notion of BCI-algebras has been introduced by K. Iséki in 1966 (see [8]).
BCI-algebras are algebraic formulation of the BCI-system in combinatory logic
which has application in the language of functional programming. The name of
BCI-algebras originates from the combinatories B, C, I in combinatory logic.

The notion of pseudo-BCI-algebras has been introduced by W. A. Dudek
and Y. B. Jun in [2] as an extension of BCI-algebras and it was investigated
by several authors in [3], [10] and [12]. These algebras have connections with
pseudo BCK-algebras, pseudo BL-algebras and pseudo MV-algebras introduced
by G. Georgescu and A. Iorgulescu in [4], [5] and [6], respectively. More about
those algebras the reader can find in [7].
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Ideals of algebras are important algebraic notion and for pseudo BCI-algebras,
and they have been extensively investigated by many authors. Y. B. Jun et
al in [10] introduced the concepts of pseudo-atoms, pseudo ideals and pseudo
BCI-homomorphisms in pseudo BCI-algebras. They displayed characterizations
of a pseudo ideal, and provided conditions for a subset to be a pseudo ideal.
They also introduced the notion of a ◦-medial pseudo BCI-algebra, and gave its
characterization.

The aim of this paper is to introduce and study the concept of pseudo p-closure
with respect to any non-empty subset of a pseudo BCI-algebra. This paper is
organized as follow: in section 2, we recall the notions of BCI-algebras and
pseudo BCI-algebras; and some properties of pseudo BCI-algebras. In section
3, we introduce the concept of p-closure with respect to a non-empty subset
in a pseudo BCI-algebra and study some related properties. Also, using the
mentioned concept, we give a necessary and sufficient condition for a pseudo
BCI-algebra to be a p-semisimple pseudo BCI-algebra. We show that Apc{0} is

the least positive ideal of X containing A. We prove that the set of all ideals A of
X which I ⊆ A and ApcI = A, is a complete lattice. For the first time, Moore in
[15] introduced a closure operation on a set. Using the concept of p-closure, we
introduce a closure operation on the set of all ideals of X. Finally, we investigate
the quotient algebra of X, induced by ApcI , and obtain some related results.

2. Preliminary

A BCK/BCI-algebra is an important class of logical algebras introduced by
K. Iséki and was extensively investigated by several researchers.

An algebra (X, ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies the
following conditions:

• (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
• (∀x ∈ X) (x ∗ 0 = x),
• (∀x, y ∈ X) (x ∗ y = 0 and y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

• (∀x ∈ X) (0 ∗ x = 0),

then we say that X is a BCK-algebra. Any BCI-algebra X satisfies the follow-
ing conditions: [16]

(a1) (∀x ∈ X) (x ∗ x=0),
(a2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a3) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z , z ∗ y ≤ z ∗ x),
(a4) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y),
(a5) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)),

where x ≤ y if and only if x ∗ y = 0.
A non-empty subset A of a BCI-algebra X is called a BCI-ideal of X if it

satisfies:

• 0 ∈ A,
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• (∀x, y ∈ X) y ∗ x ∈ A, x ∈ A ⇒ y ∈ A.

Definition 2.1. A pseudo BCI-algebra is a structure X = (X,�, ∗, ◦, 0), where
“ � ” is a binary on a set X, “ ∗ ”, and “ ◦ ” are binary operations on X and “0”
is an element of X, verifying the axioms: for all x, y, z ∈ X,

(b1) (x ∗ y) ◦ (x ∗ z) � z ∗ y, (x ◦ y) ∗ (x ◦ z) � z ◦ y,
(b2) x ∗ (x ◦ y) � y, x ◦ (x ∗ y) � y,
(b3) x � x,
(b4) x � y, y � x =⇒ x = y,
(b5) x � y ⇐⇒ x ∗ y = 0 ⇐⇒ x ◦ y = 0.

Note that every pseudo BCI-algebra satisfying x ∗ y = x ◦ y for all x, y ∈ X is
a BCI-algebra. Every pseudo BCK-algebra is a pseudo BCI-algebra.

Proposition 2.2. [4] In a pseudo BCI-algebra X the following holds:

(p1) x � 0 ⇒ x = 0.
(p2) x � y ⇒ z ∗ y � z ∗ x, z ◦ y � z ◦ x.
(p3) x � y, y � z ⇒ x � z.
(p4) (x ∗ y) ◦ z = (x ◦ z) ∗ y.
(p5) x ∗ y � z ⇔ x ◦ z � y.
(p6) (x ∗ y) ∗ (z ∗ y) � x ∗ z, (x ◦ y) ◦ (z ◦ y) � x ◦ z.
(p7) x � y ⇒ x ∗ z � y ∗ z, x ◦ z � y ◦ z.
(p8) x ∗ 0 = x = x ◦ 0.
(p9) x ∗ (x ◦ (x ∗ y)) = x ∗ y and x ◦ (x ∗ (x ◦ y)) = x ◦ y.

(p10) 0 ∗ (x ◦ y) � y ◦ x.
(p11) 0 ◦ (x ∗ y) � y ∗ x.
(p12) 0 ∗ (x ∗ y) = (0 ◦ x) ◦ (0 ∗ y).
(p13) 0 ◦ (x ◦ y) = (0 ∗ x) ∗ (0 ◦ y).
(p14) 0 ∗ x = 0 ◦ x.

Example 2.3. [10] Let X = [0,∞) and � be the usual order on X. Define
binary operation ∗ and ◦ on X by

x ∗ y =

{
0 if x � y
2x
π arctan(ln(xy )) if y ≺ x,

x ◦ y =

{
0 if x � y
xe− tan(πy2x ) if y ≺ x,

for all x, y ∈ X. Then X = (X,�, ∗, ◦, 0) is a pseudo BCK-algebra, and hence
it is a pseudo BCI-algebra.

By a subalgebra of a pseudo BCI-algebra X, we mean a non-empty subset S
of X which satisfies

x ∗ y ∈ S and x ◦ y ∈ S,
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for all x, y ∈ S.
A subset A of X is called a pseudo ideal of X if it satisfies for all x, y ∈ X:

• 0 ∈ A,
• if x ∗ y, x ◦ y ∈ A and y ∈ A, then x ∈ A.

A pseudo ideal A of a pseudo BCI-algebra X is called closed if A is a subalgebra
of X.

Theorem 2.4. An ideal A of a pseudo BCI-algebra X is closed if and only if
for any x ∈ A, 0 ∗ x = 0 ◦ x ∈ A.

Proposition 2.5. [10] For any pseudo BCI-algebra X the set

K(X)={x ∈ X | 0 � x}
is a subalgebra of X, and so it is a pseudo BCK-algebra. Any subset or element
of K(X) is called positive.

Definition 2.6. [10] A pseudo BCI-algebra X is said to be ◦-medial if it satisfies
the following identity:

(x ∗ y) ◦ (z ∗ u) = (x ∗ z) ◦ (y ∗ u)

for all x, y, z, u ∈ X.

Proposition 2.7. [10] Every ◦-medial pseudo BCI-algebra X satisfies the fol-
lowing identities:

(i) x ∗ y = 0 ◦ (y ∗ x).
(ii) 0 ◦ (0 ∗ x) = x.

(iii) x ◦ (x ∗ y) = y.

An element a of a pseudo BCI-algebra X is called a pseudo-atom of X if for
every x ∈ X the following holds:

x � a⇒ x = a.

We will denote by M(X) the set of all atoms of X. Obviously,

0 ∈M(X) ∩K(X).

Notice that M(X) ∩K(X) = {0} and for every x ∈ X, 0 ∗ x ∈M(X).
A pseudo BCI-algebra X is said to be p-semisimple if it satisfies for all x ∈ X.

0 � x⇒ x = 0.

Note that if X is a p-semisimple pseudo BCI-algebra, then K(X) = 0.
Let X be a pseudo BCI-algebra. For a ∈M(X), define

V (a) = {x ∈ X | a � x}.
V (a) is called a branch of X. Notice also that V (0) = K(X) and it is a pseudo
BCK-part of X.

Proposition 2.8. [3] Let X be a pseudo BCI-algebra. Then

X =
⋃

a∈M(X)

V (a).
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A mapping f : E → E is said to be a closure operation on an ordered set
(E,≤) if it satisfies the following properties:

(i) x ≤ f(x) (extensivity),
(ii) x ≤ y ⇒ f(x) ≤ f(y), (isotony),
(iii) f(f(x)) = f(x) (idempotence).

Theorem 2.9. [1] Let L be a lattice and let f : L→ L be a closure. Then Imf
is a lattice in which the lattice operations are given by

inf{a, b} = a ∧ b , sup{a, b} = f(a ∨ b).

3. pseudo p-closure with respect to ideals

In this section, we introduce the concept of p-closure of A with respect to
I, for any non-empty subsets A and I of X and establish some useful related
properties. In what follows, let X denote a pseudo BCI-algebra unless otherwise
specified.

Definition 3.1. For any non-empty subsets I and A of X, we define the p-closure
of A with respect to I by

ApcI = {x ∈ X | a ∗ x ∈ I, a ◦ x ∈ I for some a ∈ A}.
Note that in special case, when I = A, we write ApcI = Apc.

The following lemma is an immediate consequence from Definition 3.1.

Lemma 3.2. For any subsets I, J,A,B of X, the following hold:

(i) I ∩A 6= ∅ if and only if 0 ∈ ApcI ,
(ii) if 0 ∈ I, then A ⊆ ApcI .

(iii) if A ⊆ B, then ApcI ⊆ B
pc
I ,

(iv) if I ⊆ J , then ApcI ⊆ A
pc
J .

In the following theorem, we introduce some subsets of X whose p-closure
with respect to a subset of X, is equal to the pseudo BCK-part of X.

Theorem 3.3. Let I, A be non-empty subsets of X. Then the following hold:

(i) if I is positive containing 0, then (K(X))pcI = K(X),
(ii) if A is positive and 0 ∈ I ⊆ A, then ApcI = K(X),

(iii) for any pseudo-atom element a of X, {V (a)}pc{a} = K(X).

Proof. (i) By Lemma 3.2, K(X) ⊆ (K(X))pcI . To show the reverse inclusion, let
x ∈ (K(X))pcI . Thus there exists a ∈ K(X) such that a ∗ x ∈ I and a ◦ x ∈ I. It
follows that 0 ∗ (a ∗ x) = 0. Hence by (p14) we have

0 ∗ (0 ∗ x) = (0 ◦ a) ∗ (0 ◦ x) = 0 ◦ (a ◦ x) = 0,

that is, 0 � 0∗x. Since 0∗x is a pseudo-atom we get, 0∗x = 0 and so x ∈ K(X).
Therefore (K(X))pcI = K(X).

(ii) SinceA ⊆ K(X), it follows from (i) and Lemma 3.2 thatApcI ⊆ (K(X))pcI =
K(X). On the other hand, by 0 ∈ I∩A, we can see that K(X) ⊆ ApcI . Therefore
(ii) holds.
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(iii) Let x ∈ K(X). Then 0 ∗ x = 0. Now, since

(a ∗ x) ◦ a = (a ◦ a) ∗ x = 0 ∗ x = 0,

we get a ∗ x � a and so we have a ∗ x = a. Similarly, a ◦ x = a. This implies
that x ∈ {V (a)}pc{a}. In order to show the reverse inclusion, let x ∈ {V (a)}pc{a}.
Then t ∗ x = a for some a � t. Thus by (p7), a ∗ x � t ∗ x = a and so we get
a ∗ x = a. Hence we have

0 ∗ x = (a ◦ a) ∗ x = (a ∗ x) ◦ a = a ◦ a = 0,

that is, x ∈ K(X). Therefore {V (a)}pc{a} = K(X). �

In the following example, we show that the condition 0 belong to I in Theorem
3.3 (ii) is necessary.

Example 3.4. Let X = {0, a, b, c, d} be a pseudo BCI-algebra with the follow-
ing Cayley table:

∗ 0 a b c d
0 0 0 0 0 d
a a 0 b b d
b b 0 0 b d
c c 0 0 0 d
d d d d d 0

◦ 0 a b c d
0 0 0 0 0 d
a a 0 c a d
b b 0 0 b d
c c 0 0 0 d
d d d d d 0

Taking A := {a, b} and I := {b}. It can be check that ApcI = {0, c} while
K(X) = {0, a, b, c}. Therefore ApcI 6= K(X).

Proposition 3.5. For any element c of X, (A(c))pc{c} is a positive closed ideal

of X, where A(c) = {x ∈ X | x � c}.

Proof. Because of c ◦ 0 = c ∗ 0 = c, we have 0 ∈ (A(c))pc{c}. We assert that any

element x in (A(c))pc{c} is positive. In fact, let x ∈ (A(c))pc{c}. Then there exists

t � c such that t ◦ x = t ∗ x = c. Now

0 ∗ x = (t ◦ c) ∗ x = (t ∗ x) ◦ c = c ◦ c = 0,

as asserted. Now, for any x, y ∗ x ∈ (A(c))pc{c}, there exist t1, t2 � c such that

t1 ∗ x = t1 ◦ x = c and t2 ∗ (y ∗ x) = t2 ◦ (y ∗ x) = c. By the positivity of x and
y ∗ x , we have

(t1 ∗ y) ◦ c = (t1 ◦ c) ∗ y = 0 ∗ y = (0 ∗ y) ◦ (0 ∗ x) = 0 ∗ (y ∗ x) = 0,

that is, t1 ∗ y � c. Also, from t1 ∗ x = c and t2 ∗ (y ∗ x) = c, it yields

c = t2 ∗ (y ∗ x) � c ∗ (y ∗ x) = (t1 ∗ x) ∗ (y ∗ x) � t1 ∗ y.
Hence t1∗y = c and so y ∈ (A(c))pc{c}. We have shown that (A(c))pc{c} is a positive

ideal of X. Also, since for any x ∈ (A(c))pc{c}, we have 0 ∗ x = 0 ∈ (A(c))pc{c}, it

follows from Theorem 2.4 that (A(c))pc{c} is closed. �
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Theorem 3.6. A pseudo BCI-algebra X is a pseudo BCK-algebra if and only
if {0}pcI = X for any subset I containing 0.

Proof. Straightforward. �

Theorem 3.7. A pseudo BCI-algebra X is p-semisimple if and only if {0}pcI =
{0}, for any positive subset I of X containing 0.

Proof. Let x ∈ {0}pcI . Thus 0 ∗ x = 0 ◦ x ∈ I and so 0 ∗ (0 ◦ x) = 0 ◦ (0 ∗ x) = 0.
But 0 ◦ (0 ∗ x) = x and so we have x = 0. Therefore {0}pcI = {0}.

Conversely, assume that {0}pcI = {0}. For any x ∈ K(X), we have 0 ∗ x =
0 ◦ x = 0. But 0 ∈ I and so x ∈ {0}pcI . Thus x = 0, and this implies that
K(X) = {0}. Now let x ∈ X. Since

0 ◦ (x ∗ (0 ◦ (0 ∗ x))) = (0 ◦ x) ◦ (0 ◦ (0 ◦ (0 ∗ x))) = (0 ◦ x) ◦ (0 ∗ x) = 0,

we have x ∗ (0 ◦ (0 ∗ x)) ∈ K(X) and so x ∗ (0 ◦ (0 ∗ x)) = 0. Obviously
(0 ◦ (0 ∗ x)) ∗ x = 0 and so 0 ◦ (0 ∗ x) = x. Therefore x ∈ M(X) and we get
X = M(X). Thus X is a p-semisimple. �

Lemma 3.8. For any subset I of pseudo BCI-algebra X containing 0,

(M(X))pcI = X.

Proof. Let x ∈ X. It follows from Proposition 2.8 that x ∈ V (t) for some pseudo-
atom element t of X. Hence t ∗ x = t ◦ x = 0. This implies that x ∈ (M(X))pcI
and so the proof is completed. �

Theorem 3.9. Let A be a subalgebra of X and 0 ∈ I ⊆ A. Then

(i) x ∈ ApcI if and only if 0 ∗ x ∈ A,
(ii) ApcI is a subalgebra of X containing A.

Proof. (i) (⇒) Let x ∈ ApcI . Then there exists a ∈ A such that a ∗ x ∈ I and
a◦x ∈ I. Since A is a subalgebra of X, we get (a∗x)◦a ∈ A and (a◦x)∗a ∈ A.
Therefore 0 ∗ x = 0 ◦ x ∈ A.

(⇐) Let 0 ∗ x ∈ A. By (p4) and (p14), (0 ∗ (0 ∗ x)) ◦ x = (0 ◦ x) ∗ (0 ∗ x) = 0
and similarly (0 ∗ (0 ∗ x)) ∗ x = 0. It follows from 0 ∈ I and 0 ∗ (0 ∗ x) ∈ A that
x ∈ ApcI .

(ii) Since 0 ∈ I, by Lemma 3.2, we have A ⊆ ApcI and so it remains to show
that ApcI is a subalgebra of X. Let x, y ∈ ApcI . Then there exist a, b ∈ A such
that {

a ∗ x ∈ I
a ◦ x ∈ I,

{
b ∗ y ∈ I
b ◦ y ∈ I.

Thus by the closeness of A and I ⊆ A, we have{
0 ∗ x ∈ A
0 ◦ x ∈ A,

{
0 ∗ y ∈ A
0 ◦ y ∈ A.
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Now we show that x∗y ∈ ApcI and x◦y ∈ ApcI . It follows by (p12) and (p14) that
0 ∗ (y ∗ x) = (0 ∗ y) ◦ (0 ∗ x) ∈ A and hence, we get

(0 ∗ (y ∗ x)) ∗ (x ∗ y) = ((0 ∗ y) ◦ (0 ∗ x)) ∗ (x ∗ y) = 0 ∈ I.

Also (0 ∗ (y ∗ x)) ◦ (x ∗ y) = (0 ◦ (x ∗ y)) ∗ (y ∗ x) = 0 ∈ I. Therefore x ∗ y ∈ ApcI .
Similarly, since 0 ◦ (y ◦ x) ∈ A we can show that x ◦ y ∈ ApcI . Therefore ApcI is a
subalgebra of X. �

Theorem 3.10. Let I, A be pseudo ideals of ◦-medial pseudo BCI-algebra X.
Then ApcI is a pseudo ideal of X. Moreover, if I,A are closed, then so is ApcI .

Proof. Obviously 0 ∈ ApcI . Let x, y ∗ x ∈ ApcI . Then there exist a, b ∈ A such
that {

a ∗ x ∈ I
a ◦ x ∈ I,

{
b ∗ (y ∗ x) ∈ I
b ◦ (y ∗ x) ∈ I.

Since (b ∗ (0 ∗ a)) ◦ b = (b ◦ b) ∗ (0 ∗ a) = 0 ∗ (0 ∗ a) � a ∈ A and b ∈ A, we get
b ∗ (0 ∗ a) ∈ A. Applying (p4) and (b1) we have

((b∗ (0∗a))∗y)◦ (b∗ (y ∗x)) � ((b∗ (0∗a))◦ (b∗ (y ∗x))∗y � ((y ∗x)∗ (0∗a))∗y.

Now we show ((y ∗ x) ∗ (0 ∗ a)) ∗ y � a ∗ x. For this,

(((y ∗ x) ∗ (0 ∗ a)) ∗ y)) ◦ (a ∗ x) = (((y ∗ x) ◦ (a ∗ x)) ∗ (0 ∗ a)) ∗ y
� (((y ∗ a) ◦ (x ∗ x)) ∗ (0 ∗ a)) ∗ y
� ((y ∗ a) ∗ (0 ∗ a)) ∗ y
= (y ∗ 0) ∗ y
= y ∗ y
= 0 ∈ I,

and from the definition of pseudo ideal we conclude that (b∗ (0∗a))∗y ∈ I. Now
we show (b ∗ (0 ∗ a)) ◦ y ∈ I. But,

((b ∗ (0 ∗ a)) ◦ y) ∗ (b ◦ (y ∗ x)) = ((b ∗ y) ◦ ((0 ∗ a) ∗ 0)) ∗ ((b ∗ y) ◦ (0 ∗ x))

= ((b ∗ y) ◦ (0 ∗ a)) ∗ ((b ∗ y) ◦ (0 ∗ x))

� (0 ∗ x) ◦ (0 ∗ a)

� a ∗ x
∈ I.

Since I is a pseudo ideal and b ◦ (y ∗x) ∈ I, we get (b ∗ (0 ∗a)) ◦ y ∈ I. Therefore
y ∈ ApcI , and so ApcI is a pseudo ideal of X. Now we show that ApcI is closed.
Let x ∈ ApcI . Then there exists a ∈ A such that a ∗ x, a ◦ x ∈ I. Thus we have
0 ∗ (a ∗ x) ∈ I and 0 ∗ a ∈ A. On the other hand, by (p12), we have

(0 ∗ a) ◦ (0 ∗ x) = 0 ∗ (a ∗ x).

Therefore 0 ∗ x ∈ ApcI and so the result is obtained. �
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Example 3.11. Consider the ◦-medial pseudo BCI-algebra X = (Z,−, 0) which
x ∗ y = x ◦ y = x − y, and note that A = N is a pseudo ideal of X where N
is the set of non-negative integers. Taking I := {0}, by some calculations, we
can see that ApcI = N. Thus ApcI is an ideal of X which is not closed because
1 ∗ 2 = −1 /∈ ApcI .

Remark 3.1. For subsets A and I of X with I ⊆ A, ApcI is not necessary to be
an ideal of X in general as seen in the following example.

Example 3.12. Let X = {0, a, b, c} be a pseudo BCI-algebra with the following
Cayley table:

∗ 0 a b c
0 0 0 0 0
a a 0 b b
b b 0 0 b
c c 0 0 0

◦ 0 a b c
0 0 0 0 0
a a 0 c a
b b 0 0 b
c c 0 0 0

Taking A := {b, c} and I := {b}, by routine calculations, we can see that ApcI =
{0, b}, which is not a pseudo ideal of X, because c ∗ b = 0 ∈ ApcI and c /∈ ApcI .

Lemma 3.13. For any two subsets I and A of X with 0 ∈ I ∩X, ApcI contains
K(X).

Proof. Let x ∈ K(X). Then 0 ◦ x = 0 ∗ x = 0 ∈ I. But 0 ∈ A. It implies that
x ∈ ApcI . Therefore K(X) ⊆ ApcI . �

Now, we characterization the Apc{0} by some branches.

Theorem 3.14. Let A be a pseudo ideal of X. Then Apc{0} =
⋃

x∈A∩M(X)

V (x).

Proof. Assume that y ∈
⋃

x∈A∩M(X)

V (x). Then there exists x ∈ A ∩M(X) such

that y ∈ V (x). Hence, we have x � y and so x ∗ y = x ◦ y = 0. Thus, by
x ∈ A, we get y ∈ Apc{0}. Therefore

⋃
x∈A∩M(X)

V (x) ⊆ Apc{0}. To show the reverse

inclusion, let z ∈ Apc{0}. Then there exists a ∈ A such that a ∗ z = a ◦ z = 0.

But by Proposition 2.8, a ∈ V (b) for some pseudo-atom element b of X. Hence
b � a and so b ∈ A. Also, we have b ∗ z � a ∗ z. Thus, b ∗ z = 0 and similarly
b ◦ z = 0. It follows that z ∈ V (b). Therefore z ∈

⋃
x∈A∩M(X)

V (x) and the proof

is completed. �

Corollary 3.15. Let A be a pseudo ideal of X. Then the following statements
are equivalent:

(i) K(X) ⊆ A,
(ii) A = Apc{0},

(iii) A =
⋃

x∈A∩M(X)

V (x).
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Proof. (i)⇒ (ii) Let K(X) ⊆ A. By Lemma 3.2, A ⊆ Apc{0}. Now, let x ∈ Apc{0}.
Then there exists a ∈ A such that a ∗x = a ◦x = 0 and so a � x. Thus, by (p7),
we get 0 � x ∗ a and 0 � x ◦ a which implies that x ∗ a, x ◦ a ∈ K(X). Hence
x∗a, x◦a ∈ A and so from a ∈ A, we conclude that x ∈ A. Therefore Apc{0} ⊆ A,

and so (i) holds.
(ii)⇒(iii) By Theorem 3.14, the result is obvious.
(iii)⇒ (i) Since 0 ∈ A∩M(X), we get V (0) ⊆

⋃
x∈A∩M(X)

V (x) and so V (0) ⊆

A. Hence K(X) ⊆ A. �

Theorem 3.16. For any pseudo ideal A of X, Apc{0} is a pseudo ideal of X.

Proof. Obviously 0 ∈ Apc{0}. Let x, y ∗ x ∈ Apc{0}. Then there exist a, b ∈ A such

that a � x and b � y∗x. Since (b∗(0∗a))◦b = (b◦b)∗(0∗a) = 0∗(0∗a) � a ∈ A
and b ∈ A, we get b ∗ (0 ∗ a) ∈ A. From (p7), (p6) and b � y ∗ x, we get
b ∗ (0 ∗ x) � (y ∗ x) ∗ (0 ∗ x) � y, and so (b ∗ (0 ∗ x)) ∗ y = 0. On the other hand,
by a � x and (p2), we have 0 ∗ x = 0 ∗ a, which implies that

(b ∗ (0 ∗ a)) ∗ y = 0. (1)

Also, from (p7) and b � y ∗ x, we get b ◦ y � 0 ∗ x, and so (b ∗ (0 ∗ a)) ◦ y =
(b ◦ y) ∗ (0 ∗ a) � (0 ∗x) ∗ (0 ∗ a) = (0 ◦x) ∗ (0 ◦ a) � a ◦x = 0, which implies that

(b ∗ (0 ∗ a)) ◦ y = 0. (2)

Using (1) and (2), we get y ∈ Apc{0} and the proof is completed. �

Theorem 3.17. For any pseudo closed ideal A of X, Apc{0} is closed.

Proof. Let x ∈ Apc{0}. Then there exists a ∈ A such that a ∗ x = a ◦ x = 0 and so

0 ∗ (a ∗ x) = 0. By (p12), we have (0 ◦ a) ◦ (0 ∗ x) = 0 ∗ (a ∗ x) = 0. Similarly, by
(p13) and (p14), we get (0 ◦ a) ∗ (0 ∗ x) = 0 ◦ (a ◦ x) = 0, , which the closeness of
A implies that 0 ∗ x ∈ Apc{0}. Using Theorem 2.4 we get Apc{0} is closed. �

Remark 3.2. The closed condition of ideal A in Theorem 3.17 is necessary as
we see in Example 3.11.

Theorem 3.18. For any pseudo ideal A of X, Apc{0} is the least positive pseudo

ideal containing A.

Proof. By Lemmas 3.2 and 3.13, A ⊆ Apc{0} and K(X) ⊆ Apc{0}. Let C be another

positive pseudo ideal of X containing A. Now, let x ∈ Apc{0}. By Lemma 3.2, we

have x ∈ Cpc{0}, and so by Corollary 3.15, we get x ∈ C. Therefore Apc{0} ⊆ C and

so Apc{0} is the least positive pseudo ideal containing A. �

In the following, we establish another important property of the p-closure of
an ideal with respect to an ideal.

Theorem 3.19. For any two pseudo ideals I and A of X, (ApcI )pcI = ApcI .
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Proof. Using Lemma 3.2, we have ApcI ⊆ (ApcI )pcI . Let x ∈ (ApcI )pcI . Then there
exist a ∈ ApcI and b ∈ A such that a ∗ x, a ◦ x ∈ I and b ∗ a, b ◦ a ∈ I. Now, since
(b ∗ x) ◦ (b ∗ a) � a ∗ x ∈ I, we have b ∗ x ∈ I and similarly b ◦ x ∈ I. Therefore
x ∈ ApcI and we get (ApcI )pcI = ApcI . �

Theorem 3.20. For any pseudo ideals I, A,B of X, if I ⊆ A,B, then

(A ∩B)pcI = ApcI ∩B
pc
I .

Proof. By Lemma 3.2, we have (A∩B)pcI ⊆ A
pc
I ∩B

pc
I . Let x ∈ ApcI ∩B

pc
I . Then

there exist a ∈ A and b ∈ B such that{
a ∗ x ∈ I
a ◦ x ∈ I,

{
b ∗ x ∈ I
b ◦ x ∈ I.

First, we show that (b ∗ x) ◦ (x ∗ a) ∈ I. For this, we have

((b ∗ x) ◦ (x ∗ a)) ∗ (b ∗ x) = ((b ∗ x) ∗ (b ∗ x)) ◦ (x ∗ a)

= 0 ◦ (x ∗ a)

� a ∗ x ∈ I.
Thus, since I is an ideal of X, we get (b ∗ x) ◦ (x ∗ a) ∈ I. Taking y = b ◦ (x ∗ a),
we get

y ∗ b = (b ◦ (x ∗ a)) ∗ b = (b ∗ b) ◦ (x ∗ a) = 0 ◦ (x ∗ a) � a ∗ x ∈ I ⊆ B
and so y ∈ B. Similarly, y ∗ (b◦x) = (b◦ (x∗a))∗ (b◦x) � x◦ (x∗a) � a ∈ A and
so we have y ∈ A. Thus y ∈ A∩B. But y∗x = (b◦(x∗a))∗x = (b∗x)◦(x∗a) ∈ I.
Therefore x ∈ (A ∩B)pcI and so the proof is completed. �

Theorem 3.21. Let I be a pseudo ideal of X and define

A(I) := {I ⊆ A | A is a pseudo ideal which ApcI = A}.
Then (A(I),⊆) is a complete lattice.

Proof. Clearly, X ∈ A(I) and (A(I),⊆) is a partially ordered set. Let A,B ∈
A(I). Then, by Theorem 3.20, A ∩ B ∈ A(I) and by using Theorem 3.19,
〈A∪B〉pcI ∈ A(I). Define A∧B = A∩B and A∨B = 〈A∪B〉pcI . Let C ∈ A(I)
such that A,B ⊆ C. Then, 〈A ∪ B〉 ⊆ C and hence 〈A ∪ B〉pcI ⊆ CpcI = C.
Now, 〈A ∪ B〉pcI is a l.u.b of A,B. Hence, (A(I),∧,∨,⊆) is a lattice. Now,
let {Aα}α∈Λ be a family of ideals of A(I). By simple calculation we can get
that

∧
α∈Λ

Aα =
⋂
α∈Λ

Aα and
∨
α∈Λ

Aα = 〈
⋃
α∈Λ

Aα〉pcI , hence A(I) is a complete

lattice. �

In the following theorem, we show that the notion of p-closure ideals intro-
duces a closure operation on (I(X),⊆), where I(X) is denoted the set of all
ideals of X.

Theorem 3.22. For any pseudo ideal I of X, fI : I(X) → I(X) defined by
fI(A) = ApcI is a closure operation.
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Proof. Combining Lemma 3.2 and Theorem 3.19, the result is obvious. �

Let L = (I(X),⊆,∧,∨) be the lattice of all pseudo ideals of X where A∧B =
A ∩B and A ∨B = 〈A ∪B〉. Then we have the following theorem.

Theorem 3.23. Let L = (I(X),⊆,∧,∨) and let fI : L→ L be the closure oper-
ation as in Theorem 3.22. Then Imf is a lattice in which the lattice operations
are given by inf{A,B} = A ∩B and sup{A,B} = 〈A ∪B〉pcI .

Proof. By Theorem 2.9 the result is obvious. �

Theorem 3.24. Let I, A,B be pseudo ideals of X with I ⊆ A ⊆ B. Then

(B/I)pcA/I = BpcA /I.

Proof. By I ⊆ A ⊆ B, we get A/I ⊆ B/I. Now we have

(B/I)pcA/I = {Ix ∈ X/I | Ib ∗ Ix ∈ A/I, Ib ◦ Ix ∈ A/I for some Ib ∈ B/I}
= {Ix ∈ X/I | Ib∗x ∈ A/I, Ib◦x ∈ A/I for some Ib ∈ B/I}
= {Ix ∈ X/I | b ∗ x ∈ A, b ◦ x ∈ A for some b ∈ B}
= {Ix ∈ X/I | x ∈ BpcA }
= BpcA /I.

�

Theorem 3.25. Let I, A and J,B be pseudo ideals of X and Y, respectively.
Then

(i) ApcI ×B
pc
J = (A×B)pcI×J ,

(ii) (X/ApcI )× (Y/BpcJ ) ' (X × Y )/((ApcI )0 × (BpcJ )0).

Proof. (i) Let (x, y) ∈ ApcI × B
pc
J . Then x ∈ ApcI and y ∈ BpcJ . Thus there exist

a ∈ A and b ∈ B such that a ∗ x, a ◦ x ∈ I and b ∗ y, b ◦ y ∈ J . It follows that
(a, b)∗(x, y) = (a∗x, b∗y) ∈ I×J and (a, b)◦(x, y) = (a◦x, b◦y) ∈ I×J for some
(a, b) ∈ A×B. Therefore (x, y) ∈ (A×B)pcI×J and so ApcI ×B

pc
J ⊆ (A×B)pcI×J .

The proof of reverse inclusion is similar.
(ii) Consider the natural homomorphisms πX : X → X/ApcI and πY : Y →

Y/BpcJ with πX(x) = (ApcI )x and πY (y) = (BpcJ )y. Define the mapping f :
X × Y → X/ApcI × Y/BpcJ by f(x, y) = (πX(x), πY (y)) = ((ApcI )x, (B

pc
J )y).

Clearly, f is an epimorphism. Moreover,

kerf = {(x, y) ∈ X × Y | f(x, y) = ((ApcI )0, (B
pc
J )0)}

= {(x, y) ∈ X × Y | (ApcI )x = (ApcI )0 and (BpcJ )y = (BpcJ )0}
= {(x, y) ∈ X × Y | x, 0 ∗ x ∈ ApcI and y, 0 ∗ y ∈ BpcJ }
= (ApcI )0 × (BpcJ )0.

Therefore by the first isomorphism theorem, we have (X×Y )/((ApcI )0×(BpcJ )0) '
(X/ApcI )× (Y/BpcJ ). �



PSEUDO P -CLOSURE WITH RESPECT TO IDEALS 77

References

1. T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.

2. W.A. Dudek, Y.B. Jun, Pseudo BCI-algebras, East Asian Math. J. 24 (2008), 187-190.

3. G. Dymek, p-semisimple pseudo BCI-algebras, J. Mult-Valued Logic Soft Comput. 19
(2012), 461-474.

4. G. Georgescu, A. Iorgulescu, Pseudo BCK-algebras: an extension of BCK-algebras, Combi-

natorics, computability and logic (Constant¸a, 2001), 97-114, Springer Ser. Discrete Math.
Theor. Comput. Sci. Springer, London, 2001.

5. G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-
algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February

(2000), 90-92.

6. G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-
algebras, The Proceedings The Fourth International Symposium on Economic Informatics,

INFOREC Printing House, Bucharest, Romania, May (1999), 961-968.

7. A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
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