BEHAVIOR OF SOLUTIONS OF A RATIONAL THIRD ORDER DIFFERENCE EQUATION

R. ABO-ZEID

Abstract. In this paper, we solve the difference equation

$$
x_{n+1}=\frac{x_{n} x_{n-2}}{a x_{n}-b x_{n-2}}, \quad n=0,1, \ldots
$$

where a and b are positive real numbers and the initial values x_{-2}, x_{-1} and x_{0} are real numbers. We also find invariant sets and discuss the global behavior of the solutions of aforementioned equation..

AMS Mathematics Subject Classification : 39A20.
Key words and phrases : difference equation, forbidden set, convergence, unbounded solution.

1. Introduction

The behavior of the solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-1}}{b x_{n}-c x_{n-2}}, \quad n=0,1, \ldots
$$

was studied in [11]. In [12], we studied the behavior of the solutions of the two difference equations

$$
x_{n+1}=\frac{x_{n} x_{n-1}}{x_{n}-x_{n-2}}, \quad n=0,1, \ldots
$$

and

$$
x_{n+1}=\frac{x_{n} x_{n-1}}{-x_{n}+x_{n-2}}, \quad n=0,1, \ldots
$$

In [3], we studied the global behavior of the fourth order difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-2}}{-b x_{n}+c x_{n-3}}, \quad n=0,1, \ldots
$$

For more publications on global behavior of the solutions and forbidden sets, one can see [1], [2], [4]-[10], [13]-[35].

[^0]In this paper, we shall determine the forbidden set, find the solution and investigate the behavior of the solutions of the equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-2}}{a x_{n}-b x_{n-2}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where a and b are positive real numbers and the initial values x_{-2}, x_{-1} and x_{0} are real numbers.

2. Solution of equation (1)

The reciprocal transformation

$$
x_{n}=\frac{1}{y_{n}}
$$

reduces equation (1) into the third order linear homogeneous difference equation

$$
\begin{equation*}
y_{n+1}+b y_{n}-a y_{n-2}=0, \quad n=0,1 \ldots \tag{2}
\end{equation*}
$$

The characteristic equation of equation (2) is

$$
\begin{equation*}
\lambda^{3}+b \lambda^{2}-a=0 \tag{3}
\end{equation*}
$$

Clear that equation (3) has a positive real root λ_{0} for all values of $(a, b>0)$. Equation (3) can be written as

$$
\lambda^{3}+b \lambda^{2}-a=\left(\lambda-\lambda_{0}\right)\left(\lambda^{2}+\left(b+\lambda_{0}\right) \lambda+\lambda_{0}\left(b+\lambda_{0}\right)\right)=0
$$

Therefore, the roots of equation (3) are

$$
\lambda_{0}, \quad \lambda_{ \pm}=-\frac{b+\lambda_{0}}{2} \pm \frac{\sqrt{\left(b+\lambda_{0}\right)^{2}-4 \lambda_{0}\left(b+\lambda_{0}\right)}}{2}
$$

The roots of equation (3) depends on the relation between a and b.
Lemma 2.1. For equation (3), we have the following:
(1) If $a>\frac{4}{27} b^{3}$, then equation (3) has one positive real root and two complex conjugate roots.
(2) If $a=\frac{4}{27} b^{3}$, then equation (3) has one positive real root and a repeated negative real root.
(3) If $a<\frac{4}{27} b^{3}$, then equation (3) has three real different roots, one of them is positive and two negative roots.

Proof. It is sufficient to see that, the discriminant of the polynomial

$$
p(\lambda)=\lambda^{3}+b \lambda^{2}-a=0
$$

is

$$
\triangle=4 b^{3} a-27 a^{2}
$$

We shall consider the three cases given in lemma (2.1).
Case $a>\frac{4}{27} b^{3}$:
When $a>\frac{4}{27} b^{3}$, the roots of equation (3) are

$$
\lambda_{0}>\frac{b}{3}, \quad \lambda_{ \pm}=-\frac{b+\lambda_{0}}{2} \pm i \frac{\sqrt{4 \lambda_{0}\left(b+\lambda_{0}\right)-\left(b+\lambda_{0}\right)^{2}}}{2}
$$

Then the solution of equation (2) is

$$
\begin{equation*}
y_{n}=c_{1} \lambda_{0}^{n}+\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}}\left(c_{2} \cos n \theta+c_{3} \sin n \theta\right) \tag{4}
\end{equation*}
$$

where

$$
\left.\left|\lambda_{ \pm}\right|=\sqrt{\lambda_{0}\left(b+\lambda_{0}\right)}=\sqrt{\frac{a}{\lambda_{0}}} \quad \text { and } \quad \theta=\tan ^{-1}\left(-\sqrt{\frac{3 \lambda_{0}-b}{b+\lambda_{0}}}\right) \in\right] \frac{\pi}{2}, \pi[.
$$

Using the initials y_{-2}, y_{-1} and y_{0}, the values of c_{1}, c_{2} and c_{3} are:

$$
\begin{align*}
& c_{1}=\frac{1}{\Delta_{1}}\left(y_{0} c_{11}+y_{-1} c_{12}+y_{-2} c_{13}\right), \\
& c_{2}=\frac{1}{\Delta_{1}}\left(y_{0} c_{21}+y_{-1} c_{22}+y_{-2} c_{23}\right) \tag{5}\\
& \text { and } \\
& c_{3}=\frac{1}{\Delta_{1}}\left(y_{0} c_{31}+y_{-1} c_{32}+y_{-2} c_{33}\right),
\end{align*}
$$

where

$$
\begin{align*}
& c_{11}=-\frac{\lambda_{0}}{a} \sqrt{\frac{\lambda_{0}}{a}} \sin \theta, \quad c_{12}=\frac{\lambda_{0}}{a} \sin 2 \theta, \quad c_{13}=-\sqrt{\frac{\lambda_{0}}{a}} \sin \theta, \\
& c_{21}=\frac{1}{a} \sin 2 \theta-\frac{1}{\lambda_{0}^{2}} \sqrt{\frac{\lambda_{0}}{a}} \sin \theta, \quad c_{22}=-\frac{\lambda_{0}}{a} \sin 2 \theta, \quad c_{23}=\sqrt{\frac{\lambda_{0}}{a}} \sin \theta, \tag{6}\\
& c_{31}=\frac{1}{a} \cos 2 \theta-\frac{1}{\lambda_{0}^{2}} \sqrt{\frac{\lambda_{0}}{a}} \cos \theta, \quad c_{32}=-\frac{\lambda_{0}}{a} \cos 2 \theta+\frac{1}{\lambda_{0}^{2}}, \quad c_{33}=\sqrt{\frac{\lambda_{0}}{a}} \cos \theta-\frac{1}{\lambda_{0}}
\end{align*}
$$

and

$$
\Delta_{1}=\left|\begin{array}{ccc}
1 & 1 & 0 \tag{7}\\
\frac{1}{\lambda_{0}} & \sqrt{\frac{\lambda_{0}}{a}} \cos \theta & -\sqrt{\frac{\lambda_{0}}{a}} \sin \theta \\
\frac{1}{\lambda_{0}^{2}} & \frac{\lambda_{0}}{a} \cos 2 \theta & -\frac{\lambda_{0}}{a} \sin 2 \theta
\end{array}\right| .
$$

By simple calculations, we can write the solution of equation (1) as

$$
\begin{equation*}
x_{n}=\frac{1}{\frac{\alpha_{1 n}}{x_{0}}+\frac{\alpha_{2 n}}{x_{-1}}+\frac{\alpha_{3 n}}{x_{-2}}}, \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{1 n}=\frac{1}{\Delta_{1}}\left(c_{11} \lambda_{0}^{n}+c_{21}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \cos n \theta+c_{31}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \sin n \theta\right), \\
& \alpha_{2 n}=\frac{1}{\Delta_{1}}\left(c_{12} \lambda_{0}^{n}+c_{22}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \cos n \theta+c_{32}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \sin n \theta\right) \tag{9}\\
& \text { and } \\
& \alpha_{3 n}=\frac{1}{\Delta_{1}}\left(c_{13} \lambda_{0}^{n}+c_{23}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \cos n \theta+c_{33}\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}} \sin n \theta\right)
\end{align*}
$$

are such that $c_{i j}, i, j=1,2,3$ are given in (6).

Case $a=\frac{4}{27} b^{3}$:
When $a=\frac{4}{27} b^{3}$, the roots of equation (3) are

$$
\lambda_{0}=\frac{b}{3}, \quad-\frac{2 b}{3}, \quad-\frac{2 b}{3} .
$$

Then the solution of equation (2) is

$$
\begin{equation*}
y_{n}=c_{1}\left(\frac{b}{3}\right)^{n}+c_{2}\left(-\frac{2 b}{3}\right)^{n}+c_{3}\left(-\frac{2 b}{3}\right)^{n} n . \tag{10}
\end{equation*}
$$

Using the initials y_{-2}, y_{-1} and y_{0}, the values of c_{1}, c_{2} and c_{3} in this case are:

$$
\begin{align*}
& c_{1}=\frac{1}{\Delta_{2}}\left(y_{0} c_{11}+y_{-1} c_{12}+y_{-2} c_{13}\right), \tag{11}\\
& c_{2}=\frac{1}{\Delta_{2}}\left(y_{0} c_{21}+y_{-1} c_{22}+y_{-2} c_{23}\right) \\
& \text { and } \\
& c_{3}=\frac{1}{\Delta_{2}}\left(y_{0} c_{31}+y_{-1} c_{32}+y_{-2} c_{33}\right),
\end{align*}
$$

where

$$
\begin{align*}
& c_{11}=\frac{27}{8 b^{3}}, \quad c_{12}=\frac{9}{2 b^{2}}, \quad c_{13}=\frac{3}{2 b}, \\
& c_{21}=\frac{27}{b^{3}}, \quad c_{22}=-\frac{9}{2 b^{2}}, \quad c_{23}=-\frac{3}{2 b}, \tag{12}\\
& c_{31}=\frac{81}{4 b^{3}}, \quad c_{32}=\frac{27}{4 b^{2}}, \quad c_{33}=-\frac{9}{2 b}
\end{align*}
$$

and

$$
\Delta_{2}=\left|\begin{array}{ccc}
1 & 1 & 0 \\
\left(\frac{3}{b}\right) & \left(-\frac{3}{2 b}\right) & -\left(-\frac{3}{2 b}\right) \\
\left(\frac{3}{b}\right)^{2} & \left(-\frac{3}{2 b}\right)^{2} & -2\left(-\frac{3}{2 b}\right)^{2}
\end{array}\right|
$$

By simple calculations, we can write the solution of equation (1) in this case as

$$
\begin{equation*}
x_{n}=\frac{1}{\frac{\alpha_{1 n}}{x_{0}}+\frac{\alpha_{2 n}}{x_{-1}}+\frac{\alpha_{3 n}}{x_{-2}}} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{1 n}=\frac{1}{\Delta_{2}}\left(c_{11}\left(\frac{b}{3}\right)^{n}+c_{21}\left(-\frac{2 b}{3}\right)^{n}+c_{31}\left(-\frac{2 b}{3}\right)^{n} n\right), \\
& \alpha_{2 n}=\frac{1}{\Delta_{2}}\left(c_{12}\left(\frac{b}{3}\right)^{n}+c_{22}\left(-\frac{2 b}{3}\right)^{n}+c_{32}\left(-\frac{2 b}{3}\right)^{n} n\right) \tag{14}\\
& \text { and } \\
& \alpha_{3 n}=\frac{1}{\Delta_{2}}\left(c_{13}\left(\frac{b}{3}\right)^{n}+c_{23}\left(-\frac{2 b}{3}\right)^{n}+c_{33}\left(-\frac{2 b}{3}\right)^{n} n\right)
\end{align*}
$$

are such that $c_{i j}, i, j=1,2,3$ are given in (12).
Case $a<\frac{4}{27} b^{3}$:
When $a<\frac{4}{27} b^{3}$, the roots of equation (3) are

$$
\lambda_{0}<\frac{b}{3}, \quad \lambda_{ \pm}=-\frac{b+\lambda_{0}}{2} \pm \frac{\sqrt{\left(b+\lambda_{0}\right)^{2}-4 \lambda_{0}\left(b+\lambda_{0}\right)}}{2}
$$

where

$$
0<\lambda_{0}<\left|\lambda_{+}\right|<\left|\lambda_{-}\right| .
$$

Then the solution of equation (2) is

$$
\begin{equation*}
y_{n}=c_{1} \lambda_{0}^{n}+c_{2} \lambda_{-}^{n}+c_{3} \lambda_{+}^{n} . \tag{15}
\end{equation*}
$$

Using the initials y_{-2}, y_{-1} and y_{0}, the values of c_{1}, c_{2} and c_{3} in this case are:

$$
\begin{align*}
& c_{1}=\frac{1}{\Delta^{3}}\left(y_{0} c_{11}+y_{-1} c_{12}+y_{-2} c_{13}\right) \\
& c_{2}=\frac{1}{\Delta_{3}}\left(y_{0} c_{21}+y_{-1} c_{22}+y_{-2} c_{23}\right) \tag{16}\\
& \text { and } \\
& c_{3}=\frac{1}{\Delta_{3}}\left(y_{0} c_{31}+y_{-1} c_{32}+y_{-2} c_{33}\right),
\end{align*}
$$

where

$$
\begin{align*}
& c_{11}=\frac{\lambda_{-}-\lambda_{+}}{\lambda_{-}^{2} \lambda_{+}^{2}}, \quad c_{12}=\frac{-\lambda_{-}^{2}+\lambda_{+}^{2}}{\lambda_{-}^{2} \lambda_{+}^{2}}, \quad c_{13}=\frac{\lambda_{-}-\lambda_{+}}{\lambda_{-} \lambda_{+}}, \\
& c_{21}=\frac{\lambda_{+}-\lambda_{0}}{\lambda_{+}^{2} \lambda_{0}^{2}}, \quad c_{22}=\frac{\lambda_{0}^{2}-\lambda_{+}^{2}}{\lambda_{+}^{2} \lambda_{0}^{2}}, \quad c_{23}=\frac{\lambda_{+}-\lambda_{0}}{\lambda_{+} \lambda_{0}}, \tag{17}\\
& c_{31}=\frac{\lambda_{0}-\lambda_{-}}{\lambda_{0}^{2} \lambda_{-}^{2}}, \quad c_{32}=\frac{\lambda_{-}^{2}-\lambda_{0}^{2}}{\lambda_{0}^{2} \lambda_{-}^{2}}, \quad c_{33}=\frac{\lambda_{0}-\lambda_{-}}{\lambda_{0} \lambda_{-}}
\end{align*}
$$

and

$$
\Delta_{3}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{\lambda_{0}} & \frac{1}{\lambda_{-}} & \frac{1}{\lambda_{+}+} \\
\frac{1}{\lambda_{0}^{2}} & \frac{1}{\lambda_{-}^{2}} & \frac{1}{\lambda_{+}^{2}}
\end{array}\right|
$$

By simple calculations, we can write the solution of equation (1) in this case as

$$
\begin{equation*}
x_{n}=\frac{1}{\frac{\alpha_{1 n}}{x_{0}}+\frac{\alpha_{2 n}}{x_{-1}}+\frac{\alpha_{3 n}}{x_{-2}}}, \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{1 n}=\frac{1}{\Delta_{3}}\left(c_{11} \lambda_{0}^{n}+c_{21} \lambda_{-}^{n}+c_{31} \lambda_{+}^{n}\right), \\
& \alpha_{2 n}=\frac{1}{\Delta_{3}}\left(c_{12} \lambda_{0}^{n}+c_{22} \lambda_{-}^{n}+c_{32} \lambda_{+}^{n}\right) \tag{19}\\
& \text { and } \\
& \alpha_{3 n}=\frac{1}{\Delta_{3}}\left(c_{13} \lambda_{0}^{n}+c_{23} \lambda_{-}^{n}+c_{33} \lambda_{+}^{n}\right)
\end{align*}
$$

are such that $c_{i j}, i, j=1,2,3$ are given in (17).
Using equations (8), (13) and (18), we can write the forbidden set of equation (1) as

$$
F=\bigcup_{n=-2}^{\infty}\left\{\left(x_{0}, x_{-1}, x_{-2}\right) \in \mathbb{R}^{3}: \frac{\alpha_{1 n}}{x_{0}}+\frac{\alpha_{2 n}}{x_{-1}}+\frac{\alpha_{3 n}}{x_{-2}}=0\right\}
$$

where $\alpha_{1 n}, \alpha_{2 n}$ and $\alpha_{3 n}$ are given as follows:

$$
\begin{cases}\alpha_{1 n}, \alpha_{2 n} \text { and } \alpha_{3 n} \text { are given in (9), } & a>\frac{4}{27} b^{3} ; \\ \alpha_{1 n}, \alpha_{2 n} \text { and } \alpha_{3 n} \text { are given in (14), } & a=\frac{4}{27} b^{3} ; \\ \alpha_{1 n}, \alpha_{2 n} \text { and } \alpha_{3 n} \text { are given in (19), } & a<\frac{4}{27} b^{3} .\end{cases}
$$

3. Global behavior of equation (1)

Consider the set $D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{\lambda_{0}^{2}}{x}+\frac{a}{y}+\frac{a \lambda_{0}}{z}=0\right\}$.
Theorem 3.1. The set D is an invariant for equation (1).
Proof. Let $\left(x_{0}, x_{-1}, x_{-2}\right) \in D$. We show that $\left(x_{k}, x_{k-1}, x_{k-2}\right) \in D$ for each $k \in N$. The proof is by induction on k. The point $\left(x_{0}, x_{-1}, x_{-2}\right) \in D$, implies

$$
\frac{\lambda_{0}^{2}}{x_{0}}+\frac{a}{x_{-1}}+\frac{a \lambda_{0}}{x_{-2}}=0
$$

Now for $k=1$, we have

$$
\begin{gathered}
\frac{\lambda_{0}^{2}}{x_{1}}+\frac{a}{x_{0}}+\frac{a \lambda_{0}}{x_{-1}}=\frac{\lambda_{0}^{2}}{x_{0} x_{-2}}\left(a x_{0}-b x_{-2}\right)+\frac{a}{x_{0}}+\frac{a \lambda_{0}}{x_{-1}} \\
=\frac{1}{x_{0} x_{-1} x_{-2}}\left(a \lambda_{0}^{2} x_{0} x_{-1}-b \lambda_{0}^{2} x_{-1} x_{-2}+a x_{-1} x_{-2}+a \lambda_{0} x_{0} x_{-2}\right) \\
=\frac{1}{x_{0} x_{-1} x_{-2}}\left(a \lambda_{0}^{2} x_{0} x_{-1}+\left(\lambda_{0}^{3}-a\right) x_{-1} x_{-2}+a x_{-1} x_{-2}+a \lambda_{0} x_{0} x_{-2}\right) \\
=\frac{1}{x_{0} x_{-1} x_{-2}}\left(a \lambda_{0}^{2} x_{0} x_{-1}+\lambda_{0}^{3} x_{-1} x_{-2}+a \lambda_{0} x_{0} x_{-2}\right) \\
=\lambda_{0}\left(\frac{\lambda_{0}^{2}}{x_{0}}+\frac{a}{x_{-1}}+\frac{a \lambda_{0}}{x_{-2}}\right)=0
\end{gathered}
$$

This implies that $\left(x_{1}, x_{0}, x_{-1}\right) \in D$.
Suppose that the $\left(x_{k}, x_{k-1}, x_{k-2}\right) \in D$. That is

$$
\frac{\lambda_{0}^{2}}{x_{k}}+\frac{a}{x_{k-1}}+\frac{a \lambda_{0}}{x_{k-2}}=0
$$

Then

$$
\begin{gathered}
\frac{\lambda_{0}^{2}}{x_{k+1}}+\frac{a}{x_{k}}+\frac{a \lambda_{0}}{x_{k-1}}=\frac{\lambda_{0}^{2}}{x_{k} x_{k-2}}\left(a x_{k}-b x_{k-2}\right)+\frac{a}{x_{k}}+\frac{a \lambda_{0}}{x_{k-1}} \\
=\frac{1}{x_{k} x_{k-1} x_{k-2}}\left(a \lambda_{0}^{2} x_{k} x_{k-1}-b \lambda_{0}^{2} x_{k-1} x_{k-2}+a x_{k-1} x_{k-2}+a \lambda_{0} x_{k} x_{k-2}\right) \\
=\frac{1}{x_{k} x_{k-1} x_{k-2}}\left(a \lambda_{0}^{2} x_{k} x_{k-1}+\left(\lambda_{0}^{3}-a\right) x_{k-1} x_{k-2}+a x_{k-1} x_{k-2}+a \lambda_{0} x_{k} x_{k-2}\right) \\
=\frac{1}{x_{k} x_{k-1} x_{k-2}}\left(a \lambda_{0}^{2} x_{k} x_{k-1}+\lambda_{0}^{3} x_{k-1} x_{k-2}+a \lambda_{0} x_{k} x_{k-2}\right) \\
=\lambda_{0}\left(\frac{\lambda_{0}^{2}}{x_{k}}+\frac{a}{x_{k-1}}+\frac{a \lambda_{0}}{x_{k-2}}\right)=0 .
\end{gathered}
$$

Therefore, $\left(x_{k+1}, x_{k}, x_{k-1}\right) \in D$.
This completes the proof.
Note that, for the point $(x, y, z) \in \mathbb{R}^{3}$, the relation $\frac{\lambda_{0}^{2}}{x}+\frac{a}{y}+\frac{a \lambda_{0}}{z}=0$ is equivalent to $c_{1}(x, y, z)=0$.

Theorem 3.2. Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right)$ $\notin F \cup D$. If $a>\frac{4}{27} b^{3}$, then we have the following:
(1) If $a \geq b+1$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
(2) If $a<b+1$, then we have the following:
(a) If $a \geq 1$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
(b) If $a<1$, then we have the following:
(i) If $a^{2}+a b-1>0$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
(ii) If $a^{2}+a b-1=0$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is bounded.
(iii) If $a^{2}+a b-1<0$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is unbounded.

Proof. The solution of equation (1) when $a>\frac{4}{27} b^{3}$ is

$$
x_{n}=\frac{1}{\left.c_{1} \lambda_{0}^{n}+\left(\frac{a}{\lambda_{0}}\right)^{\frac{n}{2}}\left(c_{2} \cos n \theta+c_{3} \sin n \theta\right)\right)} .
$$

(1) When $a>b+1$, we have that $\lambda_{0}>1$ and $\lambda_{0}<\sqrt[3]{a}<a$. That is $\left(\frac{a}{\lambda_{0}}\right)^{n} \rightarrow \infty$ and $\lambda_{0}^{n} \rightarrow \infty$ as $n \rightarrow \infty$.
If $a=b+1$, then we have that $\lambda_{0}=1$ and $\lambda_{0}=1<\sqrt[3]{a}<a$. That is $\left(\frac{a}{\lambda_{0}}\right)^{n} \rightarrow \infty$ as $n \rightarrow \infty$ and the result follows.
(2) When $a<b+1$, we have that $\lambda_{0}<1$.
(a) If $a \geq 1$, then $\lambda_{0}<1 \leq \sqrt[3]{a} \leq a$. That is $\lambda_{0}^{n} \rightarrow 0$ and $\left(\frac{a}{\lambda_{0}}\right)^{n} \rightarrow \infty$, from which the result follows.
(b) If $a<1$, then $a<\sqrt[3]{a}$ and we have the following:
(i) If $a^{2}+a b-1>0$, then $\lambda_{0}<a<\sqrt[3]{a}<1$. This implies that $\lambda_{0}^{n} \rightarrow 0$ and $\left(\frac{a}{\lambda_{0}}\right)^{n} \rightarrow \infty$, from which the result follows.
(ii) If $a^{2}+a b-1=0$, then $\lambda_{0}=a<\sqrt[3]{a}<1$. That is $\lambda_{0}^{n} \rightarrow 0$. But as

$$
\begin{equation*}
\left|c_{1} \lambda_{0}^{n}+c_{2} \cos n \theta+c_{3} \sin n \theta\right| \neq 0 \text { for all } n \geq 0 \tag{20}
\end{equation*}
$$

the quantity (20) attains its infemum value say $\epsilon>0$ and the result follows.
(iii) If $a^{2}+a b-1<0$, then $a<\lambda_{0}<\sqrt[3]{a}<1$. This implies that $\lambda_{0}^{n} \rightarrow 0$ and $\left(\frac{a}{\lambda_{0}}\right)^{n} \rightarrow 0$, from which the result follows.

When $a=\frac{4}{27} b^{3}$, we have that $\lambda_{0}=\frac{b}{3}$. So the set D can be written as

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{9}{x}+\frac{12 b}{y}+\frac{4 b^{2}}{z}=0\right\}
$$

Theorem 3.3. Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1) such that (x_{0}, x_{-1}, x_{-2}) $\notin F \cup D$. If $a=\frac{4}{27} b^{3}$, then we have the following:
(1) If $a \geq b+1$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
(2) If $a<b+1$, then we have the following:
(a) If $0<b<\frac{3}{2}$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is unbounded.
(b) If $b=\frac{3}{2}$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
(c) If $\frac{3}{2}<b<3$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.

Proof. The solution of equation (1) when $a=\frac{4}{27} b^{3}$ is

$$
x_{n}=\frac{1}{c_{1}\left(\frac{b}{3}\right)^{n}+c_{2}\left(-\frac{2 b}{3}\right)^{n}+c_{3}\left(-\frac{2 b}{3}\right)^{n} n}
$$

(1) When $a \geq b+1$, it is sufficient to see that $\lambda_{0}=\frac{b}{3} \geq 1$ and the result follows.
(2) When $a<b+1$, we have that $\lambda_{0}=\frac{b}{3}<1$.
(a) If $0<b<\frac{3}{2}$, then $\frac{b}{3}<\frac{1}{2}$ and $\frac{2 b}{3}<1$, from which the result follows.
(b) If $b=\frac{3}{2}$, then $\frac{b}{3}=\frac{1}{2}$ and $\frac{2 b}{3}=1$, from which the result follows.
(c) If $\frac{3}{2}<b<3$, then $\frac{1}{2}<\frac{b}{3}<1$ and $1<\frac{2 b}{3}<2$, from which the result follows.

Now assume that $a<\frac{4}{27} b^{3}$. We shall consider the three sets

$$
D_{i}=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{\lambda^{2}}{x}+\frac{a}{y}+\frac{a \lambda}{z}=0\right\}, \quad i=1,2,3
$$

where

$$
\begin{cases}\lambda=\lambda_{0}, & \mathrm{i}=1 \\ \lambda=\lambda_{-}, & \mathrm{i}=2 \\ \lambda=\lambda_{+}, & \mathrm{i}=3\end{cases}
$$

By simple calculations, we can see that:

$$
\begin{cases}D_{i} \text { is equivalent to } c_{1}(x, y, z)=0, & \mathrm{i}=1 \\ D_{i} \text { is equivalent to } c_{2}(x, y, z)=0, & \mathrm{i}=2 \\ D_{i} \text { is equivalent to } c_{3}(x, y, z)=0, & \mathrm{i}=3\end{cases}
$$

Theorem 3.4. Each set of the sets $D_{i}, i=1,2$ and 3 is an invariant for equation (1).
Proof. The proof is similar to that of theorem (3.1) and will be omitted.
Theorem 3.5. Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right)$ $\notin F \cup D_{2}$. If $a<\frac{4}{27} b^{3}$, then we have the following:
(1) If $a>-1+b$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is unbounded.
(2) If $a=-1+b$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to the period-2 solution

$$
\left\{\ldots,-\frac{1}{c_{2}}, \frac{1}{c_{2}},-\frac{1}{c_{2}}, \frac{1}{c_{2}}, \ldots\right\}
$$

(3) If $a<-1+b$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.

Proof. The solution of equation (1) when $a<\frac{4}{27} b^{3}$ is

$$
x_{n}=\frac{1}{c_{1} \lambda_{0}^{n}+c_{2} \lambda_{-}^{n}+c_{3} \lambda_{+}^{n}}
$$

Clear that

$$
\lambda_{-}<-\frac{2 b}{3}<\lambda_{+}<-\frac{b}{3}<0<\lambda_{0} \text { and } 0<\lambda_{0}<\left|\lambda_{+}\right|<\left|\lambda_{-}\right|
$$

The condition $\left(x_{0}, x_{-1}, x_{-2}\right) \notin F \cup D_{2}$ ensures that $c_{2} \neq 0$.
(1) If $a>-1+b$, then $\lambda_{-}>-1$. This implies that $\lambda_{0}<\left|\lambda_{+}\right|<\left|\lambda_{-}\right|<1$, from which the result follows.
(2) If $a=-1+b$, then $\lambda_{-}=-1$. This implies that $\lambda_{0}<\left|\lambda_{+}\right|<\left|\lambda_{-}\right|=1$. Then

$$
x_{2 n} \rightarrow \frac{1}{c_{2}} \text { and } x_{2 n+1} \rightarrow-\frac{1}{c_{2}}
$$

Clear that

$$
\left\{\ldots,-\frac{1}{c_{2}}, \frac{1}{c_{2}},-\frac{1}{c_{2}}, \frac{1}{c_{2}}, \ldots\right\}
$$

is a period-2 solution of equation (1).
(3) If $a<-1+b$, then $\lambda_{-}<-1$. The solution of equation (1) can be written

$$
x_{n}=\frac{1}{\lambda_{-}^{n}\left(c_{1}\left(\frac{\lambda_{0}}{\lambda_{-}}\right)^{n}+c_{2}+c_{3}\left(\frac{\lambda_{+}}{\lambda_{-}}\right)^{n}\right)} .
$$

Clear that $\frac{\lambda_{0}}{\lambda_{-}}>-1$ and $\frac{\lambda_{+}}{\lambda_{-}}<1$, from which the result follows.

In the following results, we show that when $a>\frac{4}{27} b^{3}$, under certain conditions there exist solutions, either periodic or converge to periodic solutions for equation (1).

Suppose that $\theta=\frac{p}{q} \pi$, where p and q are positive relatively prime integers such that $\frac{q}{2}<p<q$.

Theorem 3.6. Assume that $a>\frac{4}{27} b^{3}, a<b+1$. Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right) \notin D \cup F$. If $a^{2}+b a-1=0$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to a periodic solution with prime period $2 q$.

Proof. Assume that $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right)$ $\notin D \cup F$ and let the angle $\left.\theta=\frac{p}{q} \pi \in\right] \frac{\pi}{2}, \pi[$.
When $a>\frac{4}{27} b^{3}$ and $a^{2}+b a-1=0\left(\lambda_{0}=a<1\right)$, the solution of equation (1) is

$$
x_{n}=\frac{1}{c_{1} \lambda_{0}^{n}+c_{2} \cos n \theta+c_{3} \sin n \theta}
$$

Then we can write

$$
\begin{aligned}
x_{2 q m+l} & =\frac{1}{c_{1} \lambda_{0}^{2 q m+l}+c_{2} \cos (2 q m+l) \theta+c_{3} \sin (2 q m+l) \theta} \\
& =\frac{1}{c_{1} \lambda_{0}^{2 q m+l}+c_{2} \cos l \theta+c_{3} \sin l \theta}, l=1,2, \ldots, 2 q
\end{aligned}
$$

As $m \rightarrow \infty$, we get

$$
x_{2 q m+l} \rightarrow \mu_{l}=\frac{1}{c_{2} \cos l \theta+c_{3} \sin l \theta}, l=1,2, \ldots, 2 q
$$

Therefore, the solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to

$$
\begin{equation*}
\left\{\ldots, \mu_{1}, \mu_{2}, \ldots, \mu_{2 q-1}, \mu_{2 q}, \mu_{1}, \mu_{2}, \ldots, \mu_{2 q-1}, \mu_{2 q}, \ldots\right\} \tag{21}
\end{equation*}
$$

Simple calculations show that the solution (21) is a period- $2 q$ solution for equation (1) and will be omitted.
This completes the proof.
Theorem 3.7. Assume that $a>\frac{4}{27} b^{3}, a<b+1$ and $a^{2}+b a-1=0$. Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right) \notin F$. If $\left(x_{0}, x_{-1}, x_{-2}\right) \in D$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is a periodic solution with prime period $2 q$.
Proof. Assume that $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is a solution of equation (1) such that $\left(x_{0}, x_{-1}, x_{-2}\right)$ $\notin F$ and let the angle $\left.\theta=\frac{p}{q} \pi \in\right] \frac{\pi}{2}, \pi[$.
When $\left(x_{0}, x_{-1}, x_{-2}\right) \in D$, we have that $c_{1}=0$ and the solution of equation (1) is

$$
x_{n}=\frac{1}{c_{2} \cos n \theta+c_{3} \sin n \theta} .
$$

Then we have

$$
\begin{aligned}
x_{n+2 q} & =\frac{1}{c_{2} \cos (n+2 q) \theta+c_{3} \sin (n+2 q) \theta} \\
& =\frac{1}{c_{2} \cos (n \theta+2 p \pi)+c_{3} \sin (n \theta+2 p \pi)} \\
& =\frac{1}{c_{2} \cos (n \theta)+c_{3} \sin (n \theta)} \\
& =x_{n}
\end{aligned}
$$

This completes the proof.
Example (1) Figure 1. shows that if $a=b=\frac{1}{\sqrt{2}}\left(a>\frac{4}{27} b^{3}, a<b+1\right.$, $a^{2}+a b-1=0$ and $\left.\theta=\frac{3}{4} \pi\right)$, then a solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ of equation (1) with initial conditions $x_{-2}=1, x_{-1}=1.2$ and $x_{0}=-1$ converges to a period- 8 solution.

Example (2) Figure 2. shows that if $a=b=\frac{1}{\sqrt{2}}\left(a>\frac{4}{27} b^{3}, a<b+1\right.$, $a^{2}+a b-1=0$ and $\left.\theta=\frac{3}{4} \pi\right)$, then a solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ of equation (1) with initial conditions $x_{-2}=2, x_{-1}=-\frac{2 \sqrt{2}}{3}$ and $x_{0}=1\left(\left(x_{-2}, x_{-1}, x_{0}\right) \in D\right)$ is periodic with prime period- 8 solution.

Figure 1. $x_{n+1}=\frac{x_{n} x_{n-2}}{\frac{1}{\sqrt{2}} x_{n}-\frac{1}{\sqrt{2}} x_{n-2}}$

Figure 2. $x_{n+1}=\frac{x_{n} x_{n-2}}{\frac{1}{\sqrt{2}} x_{n}-\frac{1}{\sqrt{2}} x_{n-2}}$

References

1. R. Abo-Zeid, Behavior of solutions of a second order rational difference equation, Math. Morav. 23 (2019), 11-25.
2. R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca 69 (2019), 147-158.
3. R. Abo-Zeid, Global behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mexicana 25 (2019), 187-194.
4. R. Abo-Zeid, On a third order difference equation, Acta Univ. Apulensis 55 (2018), 89-103.
5. R. Abo-Zeid, Behavior of solutions of a higher order difference equation, Alabama J. Math. 42 (2018), 1-10.
6. R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J. DOI:10.1515/gmj-2018-0008.
7. R. Abo-Zeid, Forbidden set and solutions of a higher order difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25 (2018), 75-84.
8. R. Abo-Zeid Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl. 24 (2018), 220-239.
9. R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30 (2016), 3265-3276.
10. R. Abo-Zeid, Global behavior of a third order rational difference equation, Math. Bohem. 139 (2014), 25-37.
11. R. Abo-Zeid, Global behavior of a rational difference equation with quadratic term, Math. Morav. 18 (2014), 81-88.
12. R. Abo-Zeid, On the solutions of two third order recursive sequences, Armenian J. Math. 6 (2014), 64-66.
13. R. Abo-Zeid, Global behavior of a fourth order difference equation, Acta Commentaiones Univ. Tartuensis Math. 18 (2014), 211-220.
14. A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ. 3 (2008), 195-225.
15. A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ. 3 (2008), 1-35.
16. A. Anisimova and I. Bula, Some problems of second-order rational difference equations with quadratic terms, Int. J. Difference Equ. 9 (2014), 11-21.
17. I. Bajo, Forbidden sets of planar rational systems of difference equations with common denominator, Appl. Anal. Discrete Math. 8 (2014), 16-32.
18. I. Bajo, D. Franco and J. Perán, Dynamics of a rational system of difference equations in the plane, Adv. Difference Equ. 2011, Article ID 958602, 17 pages.
19. F. Balibrea and A. Cascales, On forbidden sets, J. Difference Equ. Appl. 21 (2015), 974996.
20. E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman \& Hall/CRC, Boca Raton, 2008.
21. M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani, N.L. Ortiz and H. Sedaghat, Dynamics of rational difference equations containing quadratic terms, J. Difference Equ. Appl. 14 (2008), 191-208.
22. M. Gümüş and R. Abo-Zeid, On the solutions of a (2k+2)th order difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25 (2018), 129-143.
23. M. Gümüş, The global asymptotic stability of a system of difference equations, J. Difference Equ. Appl. 24 (2018), 976-991.
24. M. Gümüş and Ö. Öcalan, The qualitative analysis of a rational system of diffrence equations, J. Fract. Calc. Appl. 9 (2018), 113-126.
25. M. Gümüş and Ö. Öcalan, Global asymptotic stability of a nonautonomous difference equation, Journal of Applied Mathematics 2014, Article ID 395954, 5 pages.
26. E.A. Jankowski and M.R.S. Kulenović, Attractivity and global stability for linearizable difference equations, Comput. Math. Appl. 57 (2009), 1592-1607.
27. C.M. Kent and H. Sedaghat, Global attractivity in a quadratic-linear rational difference equation with delay, J. Difference Equ. Appl. 15 (2009), 913-925.
28. R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukrainian Math. J. 61 (2009), 988-993.
29. V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
30. V.L. Kocic, G. Ladas, Global attractivity in a second order nonlinear difference equations, J. Math. Anal. Appl. 180 (1993), 144-150.
31. M.R.S. Kulenović, and M. Mehuljić, Global behavior of some rational second order difference equations, Int. J. Difference Equ. 7 (2012), 153-162.
32. M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, 2002.
33. H. Sedaghat, On third order rational equations with quadratic terms, J. Difference Appl. 14 (2008), 889-897.
34. H. Shojaei, S. Parvandeh, T. Mohammadi, Z. Mohammadi and N. Mohammadi, Stability and convergence of A higher order rational difference equation, Australian J. Bas. Appl. Sci. 5 (2011), 72-77.
35. I. Szalkai, Avoiding forbidden sequences by finding suitable initial values, Int. J. Difference Equ. 3 (2008), 305-315.
R. Abo-Zeid received the bachelor degree from Ain Shams University. He received both of M.Sc. and Ph.D. from Helwan University. He worked as a lecturer in some universities and colleges. He is now working as an assistant professor in the Higher Institute for Engineering \& Technology, Al-Obour. His research interests includes the qualitative behavior of the scalar difference equations.

Department of Basic Science, The Higher Institute for Engineering \& Technology, AlObour, Cairo, Egypt.
e-mail: abuzead73@yahoo.com

[^0]: Received August 19, 2019. Revised December 7, 2019. Accepted December 16, 2019.
 (c) 2020 KSCAM .

