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BEHAVIOR OF SOLUTIONS OF A RATIONAL THIRD

ORDER DIFFERENCE EQUATION

R. ABO-ZEID

Abstract. In this paper, we solve the difference equation

xn+1 =
xnxn−2

axn − bxn−2
, n = 0, 1, ...,

where a and b are positive real numbers and the initial values x−2, x−1

and x0 are real numbers. We also find invariant sets and discuss the global

behavior of the solutions of aforementioned equation..
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1. Introduction

The behavior of the solutions of the difference equation

xn+1 =
axnxn−1

bxn − cxn−2
, n = 0, 1, ...,

was studied in [11]. In [12], we studied the behavior of the solutions of the two
difference equations

xn+1 =
xnxn−1

xn − xn−2
, n = 0, 1, ...,

and

xn+1 =
xnxn−1

−xn + xn−2
, n = 0, 1, ....

In [3], we studied the global behavior of the fourth order difference equation

xn+1 =
axnxn−2

−bxn + cxn−3
, n = 0, 1, ....

For more publications on global behavior of the solutions and forbidden sets,
one can see [1], [2], [4]-[10], [13]-[35].
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In this paper, we shall determine the forbidden set, find the solution and inves-
tigate the behavior of the solutions of the equation

xn+1 =
xnxn−2

axn − bxn−2
, n = 0, 1, ..., (1)

where a and b are positive real numbers and the initial values x−2, x−1 and x0

are real numbers.

2. Solution of equation (1)

The reciprocal transformation

xn =
1

yn

reduces equation (1) into the third order linear homogeneous difference equation

yn+1 + byn − ayn−2 = 0, n = 0, 1.... (2)

The characteristic equation of equation (2) is

λ3 + bλ2 − a = 0. (3)

Clear that equation (3) has a positive real root λ0 for all values of (a, b > 0).
Equation (3) can be written as

λ3 + bλ2 − a = (λ− λ0)(λ2 + (b+ λ0)λ+ λ0(b+ λ0)) = 0.

Therefore, the roots of equation (3) are

λ0, λ± = −b+ λ0

2
±
√

(b+ λ0)2 − 4λ0(b+ λ0)

2
.

The roots of equation (3) depends on the relation between a and b.

Lemma 2.1. For equation (3), we have the following:

(1) If a > 4
27b

3, then equation (3) has one positive real root and two complex
conjugate roots.

(2) If a = 4
27b

3, then equation (3) has one positive real root and a repeated
negative real root.

(3) If a < 4
27b

3, then equation (3) has three real different roots, one of them
is positive and two negative roots.

Proof. It is sufficient to see that, the discriminant of the polynomial

p(λ) = λ3 + bλ2 − a = 0

is

4 = 4b3a− 27a2.

�



Behavior of solutions of a rational third order difference equation 3

We shall consider the three cases given in lemma (2.1).
Case a > 4

27b
3:

When a > 4
27b

3, the roots of equation (3) are

λ0 >
b

3
, λ± = −b+ λ0

2
± i
√

4λ0(b+ λ0)− (b+ λ0)2

2
.

Then the solution of equation (2) is

yn = c1λ
n
0 + (

a

λ0
)

n
2 (c2 cosnθ + c3 sinnθ), (4)

where

|λ±| =
√
λ0(b+ λ0) =

√
a

λ0
and θ = tan−1(−

√
3λ0 − b
b+ λ0

) ∈]
π

2
, π[.

Using the initials y−2, y−1 and y0, the values of c1, c2 and c3 are:

c1 = 1
∆1

(y0c11 + y−1c12 + y−2c13),

c2 = 1
∆1

(y0c21 + y−1c22 + y−2c23)

and
c3 = 1

∆1
(y0c31 + y−1c32 + y−2c33),

(5)

where

c11 = −λ0

a

√
λ0

a
sin θ, c12 =

λ0

a
sin 2θ, c13 = −

√
λ0

a
sin θ,

c21 =
1

a
sin 2θ − 1

λ2
0

√
λ0

a
sin θ, c22 = −λ0

a
sin 2θ, c23 =

√
λ0

a
sin θ,

c31 =
1

a
cos 2θ − 1

λ2
0

√
λ0

a
cos θ, c32 = −λ0

a
cos 2θ +

1

λ2
0

, c33 =

√
λ0

a
cos θ − 1

λ0

(6)

and

∆1 =

∣∣∣∣∣∣∣
1 1 0
1
λ0

√
λ0

a cos θ −
√

λ0

a sin θ
1
λ2
0

λ0

a cos 2θ −λ0

a sin 2θ

∣∣∣∣∣∣∣ . (7)

By simple calculations, we can write the solution of equation (1) as

xn =
1

α1n

x0
+ α2n

x−1
+ α3n

x−2

, (8)

where

α1n = 1
∆1

(c11λ
n
0 + c21( aλ0

)
n
2 cosnθ + c31( aλ0

)
n
2 sinnθ),

α2n = 1
∆1

(c12λ
n
0 + c22( aλ0

)
n
2 cosnθ + c32( aλ0

)
n
2 sinnθ)

and
α3n = 1

∆1
(c13λ

n
0 + c23( aλ0

)
n
2 cosnθ + c33( aλ0

)
n
2 sinnθ)

(9)

are such that cij , i, j = 1, 2, 3 are given in (6).
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Case a = 4
27b

3:

When a = 4
27b

3, the roots of equation (3) are

λ0 =
b

3
, −2b

3
, −2b

3
.

Then the solution of equation (2) is

yn = c1(
b

3
)n + c2(−2b

3
)n + c3(−2b

3
)nn. (10)

Using the initials y−2, y−1 and y0, the values of c1, c2 and c3 in this case are:

c1 = 1
∆2

(y0c11 + y−1c12 + y−2c13),

c2 = 1
∆2

(y0c21 + y−1c22 + y−2c23)

and
c3 = 1

∆2
(y0c31 + y−1c32 + y−2c33),

(11)

where

c11 =
27

8b3
, c12 =

9

2b2
, c13 =

3

2b
,

c21 =
27

b3
, c22 = − 9

2b2
, c23 = − 3

2b
,

c31 =
81

4b3
, c32 =

27

4b2
, c33 = − 9

2b

(12)

and

∆2 =

∣∣∣∣∣∣
1 1 0

( 3
b ) (− 3

2b ) −(− 3
2b )

( 3
b )2 (− 3

2b )
2 −2(− 3

2b )
2

∣∣∣∣∣∣ .
By simple calculations, we can write the solution of equation (1) in this case as

xn =
1

α1n

x0
+ α2n

x−1
+ α3n

x−2

, (13)

where

α1n = 1
∆2

(c11( b3 )n + c21(− 2b
3 )n + c31(− 2b

3 )nn),

α2n = 1
∆2

(c12( b3 )n + c22(− 2b
3 )n + c32(− 2b

3 )nn)

and
α3n = 1

∆2
(c13( b3 )n + c23(− 2b

3 )n + c33(− 2b
3 )nn)

(14)

are such that cij , i, j = 1, 2, 3 are given in (12).
Case a < 4

27b
3:

When a < 4
27b

3, the roots of equation (3) are

λ0 <
b

3
, λ± = −b+ λ0

2
±
√

(b+ λ0)2 − 4λ0(b+ λ0)

2
,

where

0 < λ0 < |λ+| < |λ−|.
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Then the solution of equation (2) is

yn = c1λ
n
0 + c2λ

n
− + c3λ

n
+. (15)

Using the initials y−2, y−1 and y0, the values of c1, c2 and c3 in this case are:

c1 = 1
∆3

(y0c11 + y−1c12 + y−2c13),

c2 = 1
∆3

(y0c21 + y−1c22 + y−2c23)

and
c3 = 1

∆3
(y0c31 + y−1c32 + y−2c33),

(16)

where

c11 =
λ− − λ+

λ2
−λ

2
+

, c12 =
−λ2
− + λ2

+

λ2
−λ

2
+

, c13 =
λ− − λ+

λ−λ+
,

c21 =
λ+ − λ0

λ2
+λ

2
0

, c22 =
λ2

0 − λ2
+

λ2
+λ

2
0

, c23 =
λ+ − λ0

λ+λ0
,

c31 =
λ0 − λ−
λ2

0λ
2
−

, c32 =
λ2
− − λ2

0

λ2
0λ

2
−

, c33 =
λ0 − λ−
λ0λ−

(17)

and

∆3 =

∣∣∣∣∣∣∣
1 1 1
1
λ0

1
λ−

1
λ+

1
λ2
0

1
λ2
−

1
λ2
+

∣∣∣∣∣∣∣ .
By simple calculations, we can write the solution of equation (1) in this case

as

xn =
1

α1n

x0
+ α2n

x−1
+ α3n

x−2

, (18)

where

α1n = 1
∆3

(c11λ
n
0 + c21λ

n
− + c31λ

n
+),

α2n = 1
∆3

(c12λ
n
0 + c22λ

n
− + c32λ

n
+)

and
α3n = 1

∆3
(c13λ

n
0 + c23λ

n
− + c33λ

n
+)

(19)

are such that cij , i, j = 1, 2, 3 are given in (17).
Using equations (8), (13) and (18), we can write the forbidden set of equation

(1) as

F =

∞⋃
n=−2

{(x0, x−1, x−2) ∈ R3 :
α1n

x0
+
α2n

x−1
+
α3n

x−2
= 0},

where α1n, α2n and α3n are given as follows: α1n, α2n and α3n are given in (9), a > 4
27b

3;
α1n, α2n and α3n are given in (14), a = 4

27b
3;

α1n, α2n and α3n are given in (19), a < 4
27b

3.
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3. Global behavior of equation (1)

Consider the set D = {(x, y, z) ∈ R3 :
λ2
0

x + a
y + aλ0

z = 0}.

Theorem 3.1. The set D is an invariant for equation (1).

Proof. Let (x0, x−1, x−2) ∈ D . We show that (xk, xk−1, xk−2) ∈ D for each
k ∈ N . The proof is by induction on k. The point (x0, x−1, x−2) ∈ D, implies

λ2
0

x0
+

a

x−1
+
aλ0

x−2
= 0.

Now for k = 1, we have

λ2
0

x1
+

a

x0
+
aλ0

x−1
=

λ2
0

x0x−2
(ax0 − bx−2) +

a

x0
+
aλ0

x−1

=
1

x0x−1x−2
(aλ2

0x0x−1 − bλ2
0x−1x−2 + ax−1x−2 + aλ0x0x−2)

=
1

x0x−1x−2
(aλ2

0x0x−1 + (λ3
0 − a)x−1x−2 + ax−1x−2 + aλ0x0x−2)

=
1

x0x−1x−2
(aλ2

0x0x−1 + λ3
0x−1x−2 + aλ0x0x−2)

= λ0(
λ2

0

x0
+

a

x−1
+
aλ0

x−2
) = 0.

This implies that (x1, x0, x−1) ∈ D.
Suppose that the (xk, xk−1, xk−2) ∈ D. That is

λ2
0

xk
+

a

xk−1
+

aλ0

xk−2
= 0.

Then
λ2

0

xk+1
+

a

xk
+

aλ0

xk−1
=

λ2
0

xkxk−2
(axk − bxk−2) +

a

xk
+

aλ0

xk−1

=
1

xkxk−1xk−2
(aλ2

0xkxk−1 − bλ2
0xk−1xk−2 + axk−1xk−2 + aλ0xkxk−2)

=
1

xkxk−1xk−2
(aλ2

0xkxk−1 + (λ3
0 − a)xk−1xk−2 + axk−1xk−2 + aλ0xkxk−2)

=
1

xkxk−1xk−2
(aλ2

0xkxk−1 + λ3
0xk−1xk−2 + aλ0xkxk−2)

= λ0(
λ2

0

xk
+

a

xk−1
+

aλ0

xk−2
) = 0.

Therefore, (xk+1, xk, xk−1) ∈ D.
This completes the proof. �

Note that, for the point (x, y, z) ∈ R3, the relation
λ2
0

x + a
y + aλ0

z = 0 is

equivalent to c1(x, y, z) = 0.
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Theorem 3.2. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2)

/∈ F ∪D. If a > 4
27b

3, then we have the following:

(1) If a ≥ b+ 1, then {xn}∞n=−2 converges to zero.
(2) If a < b+ 1, then we have the following:

(a) If a ≥ 1, then {xn}∞n=−2 converges to zero.
(b) If a < 1, then we have the following:

(i) If a2 + ab− 1 > 0, then {xn}∞n=−2 converges to zero.
(ii) If a2 + ab− 1 = 0, then {xn}∞n=−2 is bounded.
(iii) If a2 + ab− 1 < 0, then {xn}∞n=−2 is unbounded.

Proof. The solution of equation (1) when a > 4
27b

3 is

xn =
1

c1λn0 + ( aλ0
)

n
2 (c2 cosnθ + c3 sinnθ))

.

(1) When a > b + 1, we have that λ0 > 1 and λ0 < 3
√
a < a. That is

( aλ0
)n →∞ and λn0 →∞ as n→∞.

If a = b + 1, then we have that λ0 = 1 and λ0 = 1 < 3
√
a < a. That is

( aλ0
)n →∞ as n→∞ and the result follows.

(2) When a < b+ 1, we have that λ0 < 1.
(a) If a ≥ 1, then λ0 < 1 ≤ 3

√
a ≤ a. That is λn0 → 0 and ( aλ0

)n → ∞,
from which the result follows.

(b) If a < 1, then a < 3
√
a and we have the following:

(i) If a2 + ab− 1 > 0, then λ0 < a < 3
√
a < 1. This implies that

λn0 → 0 and ( aλ0
)n →∞, from which the result follows.

(ii) If a2 + ab− 1 = 0, then λ0 = a < 3
√
a < 1. That is λn0 → 0.

But as

|c1λn0 + c2 cosnθ + c3 sinnθ| 6= 0 for all n ≥ 0, (20)

the quantity (20) attains its infemum value say ε > 0 and the
result follows.

(iii) If a2 + ab− 1 < 0, then a < λ0 < 3
√
a < 1. This implies that

λn0 → 0 and ( aλ0
)n → 0, from which the result follows.

�

When a = 4
27b

3, we have that λ0 = b
3 . So the set D can be written as

D = {(x, y, z) ∈ R3 :
9

x
+

12b

y
+

4b2

z
= 0}.

Theorem 3.3. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2)

/∈ F ∪D. If a = 4
27b

3, then we have the following:

(1) If a ≥ b+ 1, then {xn}∞n=−2 converges to zero.
(2) If a < b+ 1, then we have the following:

(a) If 0 < b < 3
2 , then {xn}∞n=−2 is unbounded.

(b) If b = 3
2 , then {xn}∞n=−2 converges to zero.
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(c) If 3
2 < b < 3, then {xn}∞n=−2 converges to zero.

Proof. The solution of equation (1) when a = 4
27b

3 is

xn =
1

c1( b3 )n + c2(− 2b
3 )n + c3(− 2b

3 )nn
.

(1) When a ≥ b + 1, it is sufficient to see that λ0 = b
3 ≥ 1 and the result

follows.
(2) When a < b+ 1, we have that λ0 = b

3 < 1.

(a) If 0 < b < 3
2 , then b

3 <
1
2 and 2b

3 < 1, from which the result follows.

(b) If b = 3
2 , then b

3 = 1
2 and 2b

3 = 1, from which the result follows.

(c) If 3
2 < b < 3, then 1

2 <
b
3 < 1 and 1 < 2b

3 < 2, from which the result
follows.

�

Now assume that a < 4
27b

3. We shall consider the three sets

Di = {(x, y, z) ∈ R3 :
λ2

x
+
a

y
+
aλ

z
= 0}, i = 1, 2, 3,

where  λ = λ0, i=1;
λ = λ−, i=2;
λ = λ+, i=3.

By simple calculations, we can see that: Di is equivalent to c1(x, y, z) = 0, i=1;
Di is equivalent to c2(x, y, z) = 0, i=2;
Di is equivalent to c3(x, y, z) = 0, i=3.

Theorem 3.4. Each set of the sets Di, i = 1 ,2 and 3 is an invariant for
equation (1).

Proof. The proof is similar to that of theorem (3.1) and will be omitted. �

Theorem 3.5. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2)

/∈ F ∪D2. If a < 4
27b

3, then we have the following:

(1) If a > −1 + b, then {xn}∞n=−2 is unbounded.
(2) If a = −1 + b, then {xn}∞n=−2 converges to the period-2 solution

{...,− 1

c2
,

1

c2
,− 1

c2
,

1

c2
, ...}.

(3) If a < −1 + b, then {xn}∞n=−2 converges to zero.

Proof. The solution of equation (1) when a < 4
27b

3 is

xn =
1

c1λn0 + c2λn− + c3λn+
.
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Clear that

λ− < −
2b

3
< λ+ < − b

3
< 0 < λ0 and 0 < λ0 < |λ+| < |λ−|.

The condition (x0, x−1, x−2) /∈ F ∪D2 ensures that c2 6= 0.

(1) If a > −1 + b, then λ− > −1. This implies that λ0 < |λ+| < |λ−| < 1,
from which the result follows.

(2) If a = −1 + b, then λ− = −1. This implies that λ0 < |λ+| < |λ−| = 1.
Then

x2n →
1

c2
and x2n+1 → −

1

c2
.

Clear that

{...,− 1

c2
,

1

c2
,− 1

c2
,

1

c2
, ...}

is a period-2 solution of equation (1).
(3) If a < −1+b, then λ− < −1. The solution of equation (1) can be written

xn =
1

λn−(c1( λ0

λ−
)n + c2 + c3(λ+

λ−
)n)

.

Clear that λ0

λ−
> −1 and λ+

λ−
< 1, from which the result follows.

�

In the following results, we show that when a > 4
27b

3, under certain conditions
there exist solutions, either periodic or converge to periodic solutions for equation
(1).
Suppose that θ = p

qπ, where p and q are positive relatively prime integers such

that q
2 < p < q.

Theorem 3.6. Assume that a > 4
27b

3, a < b+ 1. Let {xn}∞n=−2 be a solution of

equation (1) such that (x0, x−1, x−2) /∈ D∪F . If a2 +ba−1 = 0, then {xn}∞n=−2

converges to a periodic solution with prime period 2q.

Proof. Assume that {xn}∞n=−2 is a solution of equation (1) such that (x0, x−1, x−2)
/∈ D ∪ F and let the angle θ = p

qπ ∈]π2 , π[.

When a > 4
27b

3 and a2 + ba− 1 = 0 (λ0 = a < 1), the solution of equation (1) is

xn =
1

c1λn0 + c2 cosnθ + c3 sinnθ
.

Then we can write

x2qm+l =
1

c1λ
2qm+l
0 + c2 cos(2qm+ l)θ + c3 sin(2qm+ l)θ

=
1

c1λ
2qm+l
0 + c2 cos lθ + c3 sin lθ

, l = 1, 2, ..., 2q.
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As m→∞, we get

x2qm+l → µl =
1

c2 cos lθ + c3 sin lθ
, l = 1, 2, ..., 2q.

Therefore, the solution {xn}∞n=−2 converges to

{..., µ1, µ2, ..., µ2q−1, µ2q, µ1, µ2, ..., µ2q−1, µ2q, ...}. (21)

Simple calculations show that the solution (21) is a period-2q solution for equa-
tion (1) and will be omitted.
This completes the proof. �

Theorem 3.7. Assume that a > 4
27b

3, a < b + 1 and a2 + ba − 1 = 0.
Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2) /∈ F . If
(x0, x−1, x−2) ∈ D, then {xn}∞n=−2 is a periodic solution with prime period 2q.

Proof. Assume that {xn}∞n=−2 is a solution of equation (1) such that (x0, x−1, x−2)
/∈ F and let the angle θ = p

qπ ∈]π2 , π[.

When (x0, x−1, x−2) ∈ D, we have that c1 = 0 and the solution of equation (1)
is

xn =
1

c2 cosnθ + c3 sinnθ
.

Then we have

xn+2q =
1

c2 cos(n+ 2q)θ + c3 sin(n+ 2q)θ

=
1

c2 cos(nθ + 2pπ) + c3 sin(nθ + 2pπ)

=
1

c2 cos(nθ) + c3 sin(nθ)

= xn.

This completes the proof. �

Example (1) Figure 1. shows that if a = b = 1√
2

(a > 4
27b

3, a < b + 1,

a2 + ab − 1 = 0 and θ = 3
4π), then a solution {xn}∞n=−2 of equation (1) with

initial conditions x−2 = 1, x−1 = 1.2 and x0 = −1 converges to a period-8
solution.

Example (2) Figure 2. shows that if a = b = 1√
2

(a > 4
27b

3, a < b + 1,

a2 + ab − 1 = 0 and θ = 3
4π), then a solution {xn}∞n=−2 of equation (1) with

initial conditions x−2 = 2, x−1 = − 2
√

2
3 and x0 = 1 ((x−2, x−1, x0) ∈ D) is

periodic with prime period-8 solution.
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Figure 1. xn+1 = xnxn−2
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Figure 2. xn+1 = xnxn−2
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