References
- Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 https://doi.org/10.1038/290457a0
- Chomyn A, Mariottini P, Cleeter MWJ et al (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314, 592-597 https://doi.org/10.1038/314592a0
- Antonicka H and Shoubridge Eric A (2015) Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome Biogenesis. Cell Rep 10, 920-932 https://doi.org/10.1016/j.celrep.2015.01.030
- Signes A and Fernandez-Vizarra E (2018) Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 62, 255-270 https://doi.org/10.1042/EBC20170098
- Hartl F-U, Pfanner N, Nicholson DW and Neupert W (1989) Mitochondrial protein import. Biochim Biophys Acta Biomembr 988, 1-45 https://doi.org/10.1016/0304-4157(89)90002-6
- Omura T (1998) Mitochondria-Targeting Sequence, a Multi-Role Sorting Sequence Recognized at All Steps of Protein Import into Mitochondria. J Biochem 123, 1010-1016 https://doi.org/10.1093/oxfordjournals.jbchem.a022036
- Bereiter-Hahn J and Voth M (1994) Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27, 198-219 https://doi.org/10.1002/jemt.1070270303
- Lewis MR and Lewis WH (1915) Mitochondria (and other cytoplasmic structures) in tissue cultures. Am J Anat 17, 339-401 https://doi.org/10.1002/aja.1000170304
- Shutt TE and Shadel GS (2010) A compendium of human mitochondrial gene expression machinery with links to disease. Environ Mol Mutagen 51, 360-379 https://doi.org/10.1002/em.20571
- Couvillion MT, Soto IC, Shipkovenska G and Churchman LS (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499-503 https://doi.org/10.1038/nature18015
- Amunts A, Brown A, Toots J, Scheres SHW and Ramakrishnan V (2015) The structure of the human mitochondrial ribosome. Science 348, 95-98 https://doi.org/10.1126/science.aaa1193
- Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta Bioenerg 1410, 103-123 https://doi.org/10.1016/S0005-2728(98)00161-3
- Rooney JP, Ryde IT, Sanders LH et al (2015) PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 1241, 23-38 https://doi.org/10.1007/978-1-4939-1875-1_3
- Ashar FN, Zhang Y, Longchamps RJ et al (2017) Association of Mitochondrial DNA Copy Number With Cardiovascular Disease. JAMA Cardiol 2, 1247-1255 https://doi.org/10.1001/jamacardio.2017.3683
- Reznik E, Miller ML, Senbabaoglu Y et al (2016) Mitochondrial DNA copy number variation across human cancers. Elife 5, e10769 https://doi.org/10.7554/elife.10769
- Wai T, Ao A, Zhang X, Cyr D, Dufort D and Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83, 52-62 https://doi.org/10.1095/biolreprod.109.080887
- Pyle A, Anugrha H, Kurzawa-Akanbi M, Yarnall A, Burn D and Hudson G (2016) Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiol Aging 38, 216.e217-216.e210
- Srivastava S and Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10, 3093-3099 https://doi.org/10.1093/hmg/10.26.3093
- Bibikova M, Beumer K, Trautman JK and Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764-764 https://doi.org/10.1126/science.1079512
- Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82-e82
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Taylor RW and Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6, 389-402 https://doi.org/10.1038/nrg1606
- Minczuk M, Papworth MA, Miller JC, Murphy MP and Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36, 3926-3938 https://doi.org/10.1093/nar/gkn313
- Minczuk M, Papworth MA, Kolasinska P, Murphy MP and Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A 103, 19689-19694 https://doi.org/10.1073/pnas.0609502103
- Bacman SR, Williams SL, Pinto M, Peralta S and Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19, 1111-1113 https://doi.org/10.1038/nm.3261
- Jo A, Ham S, Lee GH et al (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int 2015, 305716 https://doi.org/10.1155/2015/305716
- Gammage PA, Rorbach J, Vincent AI, Rebar EJ and Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6, 458-466 https://doi.org/10.1002/emmm.201303672
- Gammage PA, Viscomi C, Simard ML et al (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 24, 1691-1695 https://doi.org/10.1038/s41591-018-0165-9
- Hashimoto M, Bacman SR, Peralta S et al (2015) MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Mol Ther 23, 1592-1599 https://doi.org/10.1038/mt.2015.126
- Yu H, Koilkonda RD, Chou TH et al (2012) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A 109, E1238-1247 https://doi.org/10.1073/pnas.1119577109
- Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K and Ishihara N (2013) Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc Natl Acad Sci U S A 110, 11863-11868 https://doi.org/10.1073/pnas.1301951110
- Lewis SC, Uchiyama LF and Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 https://doi.org/10.1126/science.aaf5549
- Villa AM, Fusi P, Pastori V et al (2012) Ethidium bromide as a marker of mtDNA replication in living cells. J Biomed Opt 17, 046001 https://doi.org/10.1117/1.JBO.17.4.046001
- Jevtic V, Kindle P and Avilov SV (2018) SYBR Gold dye enables preferential labelling of mitochondrial nucleoids and their time-lapse imaging by structured illumination microscopy. PLoS One 13, e0203956 https://doi.org/10.1371/journal.pone.0203956
- Sasaki T, Sato Y, Higashiyama T and Sasaki N (2017) Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Sci Rep 7, 11257 https://doi.org/10.1038/s41598-017-10843-8
- Calkins MJ and Reddy PH (2011) Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. Biochim Biophys Acta 1812, 1182-1189 https://doi.org/10.1016/j.bbadis.2011.04.006
- Davis AF and Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135, 883-893 https://doi.org/10.1083/jcb.135.4.883
- Rajala N, Gerhold JM, Martinsson P, Klymov A and Spelbrink JN (2014) Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res 42, 952-967 https://doi.org/10.1093/nar/gkt988
- Leibowitz RD (1971) The effect of ethidium bromide on mitochondrial DNA synthesis and mitochondrial DNA structure in HeLa cells. J Cell Biol 51, 116-122 https://doi.org/10.1083/jcb.51.1.116
- Warren EB, Aicher AE, Fessel JP and Konradi C (2017) Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism. PLoS One 12, e0190456 https://doi.org/10.1371/journal.pone.0190456
- Lentz SI, Edwards JL, Backus C, McLean LL, Haines KM and Feldman EL (2010) Mitochondrial DNA (mtDNA) biogenesis: visualization and duel incorporation of BrdU and EdU into newly synthesized mtDNA in vitro. J Histochem Cytochem 58, 207-218 https://doi.org/10.1369/jhc.2009.954701
- Alan L, Zelenka J, Jezek J, Dlaskova A and Jezek P (2010) Fluorescent in situ hybridization of mitochondrial DNA and RNA. Acta Biochim Pol 57, 403-408
- Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M and Lehmann R (2016) Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Dev Cell 39, 560-571 https://doi.org/10.1016/j.devcel.2016.11.004
- Koo DH, Singh B, Jiang J et al (2018) Single molecule mtDNA fiber FISH for analyzing numtogenesis. Anal Biochem 552, 45-49 https://doi.org/10.1016/j.ab.2017.03.015
- Chatre L and Ricchetti M (2013) Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging. J Cell Sci 126, 914-926 https://doi.org/10.1242/jcs.114322
- Alam TI, Kanki T, Muta T et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31, 1640-1645 https://doi.org/10.1093/nar/gkg251
- McArthur K, Whitehead LW, Heddleston JM et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 https://doi.org/10.1126/science.aao6047
- Ikeda M, Ide T, Fujino T et al (2015) Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One 10, e0119687 https://doi.org/10.1371/journal.pone.0119687
- Maniura-Weber K, Goffart S, Garstka HL, Montoya J and Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32, 6015-6027 https://doi.org/10.1093/nar/gkh921
- Kuznetsova I, Siira SJ, Shearwood AJ, Ermer JA, Filipovska A and Rackham O (2017) Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucleic Acids Res 45, 5487-5500 https://doi.org/10.1093/nar/gkx104
- Schneider A (1994) Import of RNA into mitochondria. Trends Cell Biol 4, 282-286 https://doi.org/10.1016/0962-8924(94)90218-6
- Wang G, Chen HW, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142, 456-467 https://doi.org/10.1016/j.cell.2010.06.035
- Wang G, Shimada E, Zhang J et al (2012) Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A 109, 4840-4845 https://doi.org/10.1073/pnas.1116792109
- Bandiera S, Mategot R, Girard M, Demongeot J and Henrion-Caude A (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64, 12-19 https://doi.org/10.1016/j.freeradbiomed.2013.06.013
- Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640 https://doi.org/10.1016/j.cell.2005.10.022
- Bandiera S, Ruberg S, Girard M et al (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 6, e20746 https://doi.org/10.1371/journal.pone.0020746
- Maniataki E and Mourelatos Z (2005) Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11, 849-852 https://doi.org/10.1261/rna.2210805
- Dasgupta N, Peng Y, Tan Z, Ciraolo G, Wang D and Li R (2015) miRNAs in mtDNA-less cell mitochondria. Cell Death Discov 1, 15004 https://doi.org/10.1038/cddiscovery.2015.4
- Jagannathan R, Thapa D, Nichols CE et al (2015) Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. Circ Cardiovasc Genet 8, 785-802 https://doi.org/10.1161/CIRCGENETICS.115.001067
- Das S, Bedja D, Campbell N et al (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 9, e96820 https://doi.org/10.1371/journal.pone.0096820
- Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607-619 https://doi.org/10.1016/j.cell.2014.05.047
- Kim KM, Noh JH, Abdelmohsen K and Gorospe M (2017) Mitochondrial noncoding RNA transport. BMB Rep 50, 164-174 https://doi.org/10.5483/BMBRep.2017.50.4.013
- Antonicka H, Sasarman F, Nishimura T, Paupe V and Shoubridge EA (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17, 386-398 https://doi.org/10.1016/j.cmet.2013.02.006
- Ozawa T, Natori Y, Sato M and Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4, 413-419 https://doi.org/10.1038/nmeth1030
- Cheong C-G and Hall TMT (2006) Engineering RNA sequence specificity of Pumilio repeats. Proceedings of the National Academy of Sciences 103, 13635-13639 https://doi.org/10.1073/pnas.0606294103
- Yan X, Hoek TA, Vale RD and Tanenbaum ME (2016) Dynamics of Translation of Single mRNA Molecules In Vivo. Cell 165, 976-989 https://doi.org/10.1016/j.cell.2016.04.034
- Wang C, Han B, Zhou R and Zhuang X (2016) Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 165, 990-1001 https://doi.org/10.1016/j.cell.2016.04.040
- Wu B, Eliscovich C, Yoon YJ and Singer RH (2016) Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430-1435 https://doi.org/10.1126/science.aaf1084
- Chatenay-Lapointe M and Shadel GS (2011) Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p. PLoS One 6, e20441 https://doi.org/10.1371/journal.pone.0020441
- Lagouge M, Mourier A, Lee HJ et al (2015) SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation. PLoS Genet 11, e1005423 https://doi.org/10.1371/journal.pgen.1005423
- Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell 167, 471-483 e410 https://doi.org/10.1016/j.cell.2016.09.003
- Morscher RJ, Ducker GS, Li SH et al (2018) Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128-132 https://doi.org/10.1038/nature25460
- Richter U, Lahtinen T, Marttinen P, Suomi F and Battersby BJ (2015) Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J Cell Biol 211, 373-389 https://doi.org/10.1083/jcb.201504062
- Ostronoff LK, Izquierdo JM, Enriquez JA, Montoya J and Cuezva JM (1996) Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J 316, 183-191 https://doi.org/10.1042/bj3160183
- Christian BE and Spremulli LL (2009) Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry 48, 3269-3278 https://doi.org/10.1021/bi8023493
- Tibbetts AS, Oesterlin L, Chan SY, Kramer G, Hardesty B and Appling DR (2003) Mammalian mitochondrial initiation factor 2 supports yeast mitochondrial translation without formylated initiator tRNA. J Biol Chem 278, 31774-31780 https://doi.org/10.1074/jbc.M304962200
- Lee C, Tibbetts AS, Kramer G and Appling DR (2009) Yeast AEP3p is an accessory factor in initiation of mitochondrial translation. J Biol Chem 284, 34116-34125 https://doi.org/10.1074/jbc.M109.055350
- Estell C, Stamatidou E, El-Messeiry S and Hamilton A (2017) In situ imaging of mitochondrial translation shows weak correlation with nucleoid DNA intensity and no suppression during mitosis. J Cell Sci 130, 4193-4199 https://doi.org/10.1242/jcs.206714
- Frazier AE, Thorburn DR and Compton AG (2019) Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 294, 5386-5395 https://doi.org/10.1074/jbc.r117.809194