Acknowledgement
Supported by : National Research Foundation of Korea
Research supported by the National Research Foundation of Korea (NRF-2018R1A2B 6001624).
References
- R. C. Alperin, The modular tree of Pythagoras, Amer. Math. Monthly 112 (2005), no. 9, 807-816. https://doi.org/10.2307/30037602
- F. J. M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1963 (1963), ZW-011, 37 pp.
- B. Berggren, Pytagoreiska triangular, Tidskrift for elementar matematik, fysik och kemi 17 (1934), 129-139.
- B. Cha, E. Nguyen, and B. Tauber, Quadratic forms and their Berggren trees, J. Number Theory 185 (2018), 218-256. https://doi.org/10.1016/j.jnt.2017.09.003
- S. Chaubey, E. Fuchs, R. Hines, S. Robert, and E. Katherine, The dynamics of super-Apollonian continued fractions, Trans. Amer. Math. Soc. (2017); https://arxiv.org/abs/1703.08616.
- K. Conrad, Pythagorean descent, http://www.math.uconn.edu/-kconrad/blurbs/linmultialg/descentPythag.pdf.
- R. W. R. Darling, Differential Forms and Connections, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9780511805110
- L. Fishman, D. Kleinbock, M. Dmitry, S. Keith, and D. Simmons, Intrinsic Diophantine approximation on manifolds: general theory, Trans. Amer. Math. Soc. 370 (2018), no. 1, 577-599. https://doi.org/10.1090/tran/6971
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-2103-4
- D. Kleinbock and K. Merrill, Rational approximation on spheres, Israel J. Math. 209 (2015), no. 1, 293-322. https://doi.org/10.1007/s11856-015-1219-z
- G. Panti, A general Lagrange theorem, Amer. Math. Monthly 116 (2009), no. 1, 70-74. https://doi.org/10.4169/193009709X469823
- G. Panti, Billiards on pythagorean triples and their Minkowski functions, arXiv:1902.00414 [math.NT].
- O. Perron, Die Lehre von den Ketterbruchen, Teubner, Leipzig, 1929.
- D. Romik, The dynamics of Pythagorean triples, Trans. Amer. Math. Soc. 360 (2008), no. 11, 6045-6064. https://doi.org/10.1090/S0002-9947-08-04467-X