References
- N. H. Argz, Log geometric techniques for open invariants in mirror symmetry, PhD thesis, University of Hamburg, 2016.
- D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gokova Geom. Topol. GGT 1 (2007), 51-91.
- D. Auroux, L. Katzarkov, and D. Orlov, Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math. 166 (2006), no. 3, 537-582. https://doi.org/10.1007/s00222-006-0003-4
- M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, 04, 2018.
- M. W. Cheung, M. Gross, G. Muller, G. Musiker, D. Rupel, S. Stella, and H. Williams, The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory Ser. A 145 (2017), 150-171. https://doi.org/10.1016/j.jcta.2016.08.004
- C.-H. Cho and Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), no. 4, 773-814. https://doi.org/10.4310/AJM.2006.v10.n4.a10
- D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/gsm/124
- M. Gross, P. Hacking, and S. Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Etudes Sci. 122 (2015), 65-168. https://doi.org/10.1007/s10240-015-0073-1
- M. Gross, P, Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497-608. https://doi.org/10.1090/jams/890
- M. Gross, P. Hacking, and B. Siebert, Theta functions on varieties with effective anticanonical class, ArXiv e-prints, January 2016.
- M. Gross and B. Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451-510. https://doi.org/10.1090/S0894-0347-2012-00757-7
- M. Gross, Theta functions and mirror symmetry, in Surveys in differential geometry 2016. Advances in geometry and mathematical physics, 95-138, Surv. Differ. Geom., 21, Int. Press, Somerville, MA, 2016. https://doi.org/10.4310/SDG.2016.v21.n1.a3
- M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, in The unity of mathematics, 321-385, Progr. Math., 244, Birkhauser Boston, Boston, MA, 2006. https://doi.org/10.1007/0-8176-4467-9_9
- E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. (2) 114 (1981), no. 2, 267-322. https://doi.org/10.2307/1971295
- G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, in Different faces of geometry, 257-300, Int. Math. Ser. (N. Y.), 3, Kluwer/Plenum, New York, 2004. https://doi.org/10.1007/0-306-48658-X_6
- D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239-272.