DOI QR코드

DOI QR Code

HYPERBOLICALLY CLOSE TO Q#p-SEQUENCES

  • Aulaskari, Rauno (Department of Physics and Mathematics University of Eastern Finland) ;
  • Makhmutov, Shamil (Department of Mathematics College of Science Sultan Qaboos University) ;
  • Rattya, Jouni (Department of Physics and Mathematics University of Eastern Finland)
  • Received : 2019.02.01
  • Accepted : 2019.11.06
  • Published : 2020.01.31

Abstract

It is shown that each sequence lying sufficiently close in the hyperbolic sense to a Q#p-sequence for a meromorphic function f in the unit disc is also a Q#p-sequence for f.

Keywords

References

  1. R. Aulaskari, S. Makhmutov, and H. Wulan, On qp sequences, in Finite or infinite dimensional complex analysis and applications, 117-125, Adv. Complex Anal. Appl. 2, Kluwer Acad. Publ., Dordrecht, 2004.
  2. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65. https://doi.org/10.1007/BF02392392
  3. Sh. A. Makhmutov, Classes of meromorphic functions characterized by a spherical derivative, Dokl. Akad. Nauk SSSR 287 (1986), no. 4, 789-794.
  4. J. L. Schiff, Normal Families, Universitext, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-0907-2
  5. S. Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), no. 2, 349-367. https://doi.org/10.5186/aasfm.1982.0733