참고문헌
- L. Brand, Classroom notes: a sequence defined by a difference equation, Amer. Math. Monthly 62 (1955), no. 7, 489-492. https://doi.org/10.2307/2307362
- M. Dehghan, R. Mazrooei-Sebdani, and H. Sedaghat, Global behaviour of the Riccati difference equation of order two, J. Difference Equ. Appl. 17 (2011), no. 4, 467-477. https://doi.org/10.1080/10236190903049017
- I. Dekkar, N. Touafek, and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 325-347. https://doi.org/10.1007/s13398-016-0297-z
- S. N. Elaydi, An Introduction to Difference Equations, second edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4757-3110-1
- M. M. El-Dessoky and E. M. Elsayed, On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl. 18 (2015), no. 2, 206-218. http://doi.org/10.1166/jctn.2015.4263
- E. M. Elsayed, On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath. 7 (2014), no. 6, 1450067, 26 pp. https://doi.org/10.1142/S1793524514500673
- N. Haddad, N. Touafek, and J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case, Math. Methods Appl. Sci. 40 (2017), no. 10, 3599-3607. https://doi.org/10.1002/mma.4248
- N. Haddad, N. Touafek, and J. F. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Com-put. 56 (2018), no. 1-2, 439-458. https://doi.org/10.1007/s12190-017-1081-8
- Y. Halim and M. Bayram, On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods Appl. Sci. 39 (2016), no. 11, 2974-2982. https://doi.org/10.1002/mma.3745
- Y. Halim, N. Touafek, and Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math. 39 (2015), no. 6, 1004-1018. https://doi.org/10.3906/mat-1503-80
- T. F. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients, DCDIS Series B: Applications & Algorithms 20, (2013), no. 2, 251-264.
- E. A. Grove, Y. Kostrov, G. Ladas, and S. W. Schultz, Riccati difference equations with real period-2 coefficients, Comm. Appl. Nonlinear Anal. 14 (2007), no. 2, 33-56.
- M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, Boca Raton, FL, 2002.
- H. Matsunaga and R. Suzuki, Classification of global behavior of a system of rational difference equations, Appl. Math. Lett. 85 (2018), 57-63. https://doi.org/10.1016/j.aml.2018.05.020
-
L. C. McGrath and C. Teixeira, Existence and behavior of solutions of the rational equation
$x_n+1=(ax_{n-1}+bx_n)/(cx_{n-1}+dx_n)x_n,\;n$ = 0, 1, 2, ..., Rocky Mountain J. Math. 36 (2006), no. 2, 649-674. https://doi.org/10.1216/rmjm/1181069472 - S. Reich and A. J. Zaslavski, Asymptotic behavior of a dynamical system on a metric space, J. Nonlinear Variational Anal. 3 (2019), 79-85.
- H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Difference Equ. Appl. 15 (2009), no. 3, 215-224. https://doi.org/10.1080/10236190802054126
- S. Selvarangam, S. Geetha, and E. Thandapani, Existence of nonoscillatory solutions to second order neutral type difference equations with mixed arguments, Int. J. Difference Equ. 13 (2018), no. 1, 55-69.
- S. Stevic, On a system of difference equations with period two coefficients, Applied Mathematics and Computation 218 (2011), no. 8, 4317-4324. https://doi.org/10.1016/j.amc.2011.10.005
- S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), no. 9, 5010-5018. https://doi.org/10.1016/j.amc.2011.10.068
- S. Stevic, Representation of solutions of bilinear difference equations in terms of gen-eralized Fibonacci sequences, Electronic Journal of Qualitative Theory of Differential Equations 2014 (2014), no. 67, 1-15.
- S. Stevic, M. A. Alghamdi, N. Shahzad, and D. A. Maturi, On a class of solvable difference equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 157943, 7 pp. https://doi.org/10.1155/2013/157943
- D. T. Tollu, Y. Yazlik, and N. Taskara, On the solutions of two special types of Riccati difference equation via Fibonacci numbers, Adv. Difference Equ. 2013 (2013), 174, 7 pp. https://doi.org/10.1186/1687-1847-2013-174
- D. T. Tollu, Y. Yazlik, and N. Taskara, On fourteen solvable systems of difference equations, Appl. Math. Comput. 233 (2014), 310-319. https://doi.org/10.1016/j.amc.2014.02.001
- D. T. Tollu, Y. Yazlik, and N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish J. Math. 42 (2018), no. 4, 1765-1778. https://doi.org/10.3906/mat-1705-33
- Q. Wang and Q. Zhang, Dynamics of a higher-order rational difference equation, J. Appl. Anal. Comput. 7 (2017), no. 2, 770-787. http://doi.org/10.11948/2017048
- Y. Yazlik, On the solutions and behavior of rational difference equations, J. Comput. Anal. Appl. 17 (2014), no. 3, 584-594.
- Y. Yazlik, D. T. Tollu, and N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci. 43 (2016), no. 1, 95-111.