참고문헌
- M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33. https://doi.org/10.1016/0012-365X(95)00095-E
- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. http://projecteuclid.org/euclid.dmj/1077475200 https://doi.org/10.1215/S0012-7094-48-01588-9
- G.-S. Cheon and J.-H. Jung, r-Whitney numbers of Dowling lattices, Discrete Math. 312 (2012), no. 15, 2337-2348. https://doi.org/10.1016/j.disc.2012.04.001
- L. Comtet, Advanced Combinatorics, revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
- R. Corcino, J. T. Malusay, J. Cillar, G. Rama, O. Silang, and I. Tacoloy, Analogies of the Qi formula for some Dowling type numbers, Util. Math. 111 (2019), 3-26.
- R. Corcino and C. Montero, A q-analogue of Rucinski-Voigt numbers, ISRN Discrete Math. 2012 (2012), Article ID 592818, 18 pages. https://doi.org/10.5402/2012/592818
- E. Gyimesi and G. Nyul, A comprehensive study of r-Dowling polynomials, Aequationes Math. 92 (2018), no. 3, 515-527. https://doi.org/10.1007/s00010-017-0538-z
- E. Gyimesi and G. Nyul, New combinatorial interpretations of r-Whitney and r-Whitney-Lah numbers, Discrete Appl. Math. 255 (2019), 222-233. https://doi.org/10.1016/j.dam.2018.08.020
- I. Mezo, A new formula for the Bernoulli polynomials, Results Math. 58 (2010), no. 3-4, 329-335. https://doi.org/10.1007/s00025-010-0039-z
- F. Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterr. J. Math. 13 (2016), no. 5, 2795-2800. https://doi.org/10.1007/s00009-015-0655-7
- J. L. Ramirez and M. Shattuck, A (p, q)-analogue of the r-Whitney-Lah numbers, J. Integer Seq. 19 (2016), no. 5, Article 16.5.6, 21 pp.
- A. Rucinski and B. Voigt, A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl. 35 (1990), no. 2, 161-172.