DOI QR코드

DOI QR Code

Exploring the Progression of Meta-Modeling Knowledge (MMK) and Relationship between MMK Progression Level and Actual Practice for Science Gifted

과학영재 학생들의 메타모델링 지식(MMK) 발달 및 MMK 발달수준과 실제 수행과의 관계 탐색

  • Received : 2020.01.12
  • Accepted : 2020.02.11
  • Published : 2020.04.20

Abstract

The purpose of this study is to explore the progression of MMK and the relationship between MMK progression level and actual practice. First, the Rasch model was used to measure MMK progression level of 51 students twice during the interval of one year. Thereafter, chi-squared test was used to determine whether there was a significant change in MMK progression. As a result of chi-squared test, there was no statistically significant change in MMK progression (p>.05). Secondly, we analyzed the relationship between MMK progression level and practice for 7 gifted students. As a result of the analysis, it was confirmed that the student's response in practice can not exceed MMK progression level. There were also cases where students have high MMK progression level showed low response in practice. The results of these two studies show that gifted education programs are needed to increase MMK progression and to provide gifted education that can connect knowledge and practice.

이 연구는 과학영재 학생들의 MMK 발달 및 MMK 발달 수준과 실제 수행과의 관계에 대한 탐색을 목적으로 한다. 먼저, Rasch 모델을 이용하여 51명 학생의 MMK 발달 단계를 1년 간격으로 2번 측정하였다. 이후 교차검증을 통해 MMK 발달에 유의미한 변화가 있는지를 판단하였다. 교차검증 결과 영재학생들의 MMK 발달은 통계적으로 유미한 변화가 없었다(p>.05). 두번째로, 7명의 영재 학생을 대상으로 MMK 발달 단계와 수행과의 관계를 분석하였다. 분석결과 학생이 수행에서 보이는 반응은 MMK 발달 단계를 능가할 수 없음을 확인할 수 있었으며, MMK 발달 단계가 높은 학생이 실제 수행에서는 낮은 수준의 반응을 보인 경우도 있었다. 이 두 연구결과는 MMK 발달을 높일 수 있도록 현재 영재 학생들에게 제공되는 교육 프로그램에 대한 제고가 필요하며, 이와 더불어 지식과 수행을 연결할 수 있는 영재교육이 필요함을 보여준다.

Keywords

References

  1. National Research Council. National Science Education Standards. Washington, D.C.: National Academy Press, 1996.
  2. National Research Council. The Next Generation Science Standards. Washington, DC: National Academy Press, 2013.
  3. Kim, S. K.; Kim, J. E.; Paik, S. H. J. Kor. Chem. Soc. 2019, 63, 102. https://doi.org/10.5012/JKCS.2019.63.2.102
  4. Cho, H. S.; Nam, J. H.; Oh, P. S. J. Kor. Ass. Sci. Educ. 2017, 37, 239. https://doi.org/10.14697/jkase.2017.37.2.0239
  5. Kim, S. K.; Park, C. Y.; Choi, H.; Paik, S. H. J. Kor. Chem. Soc. 2018, 62, 226. https://doi.org/10.5012/JKCS.2018.62.3.226
  6. Kang, N. H. J. Kor. Ass. Sci. Educ. 2017, 37, 143. https://doi.org/10.14697/jkase.2017.37.1.0143
  7. Somerville, R. C.; Hassol, S. J. Physics Today 2011, 64, 48. https://doi.org/10.1063/PT.3.1296
  8. Rosenblueth, A.; Wiener, N. Philosophy of Science 1945, 12, 316. https://doi.org/10.1086/286874
  9. Cho, E. J.; Kim C. J.; Choe, S. U. J. Kor. Ass. Sci. Educ. 2017, 37, 859. https://doi.org/10.14697/jkase.2017.37.5.859
  10. Kim, S. K., Kim. J. E.; Park, S. H.; Paik, S. H. J. Kor. Ass. Sci. Educ. 2019, 39, 457. https://doi.org/10.14697/JKASE.2019.39.3.457
  11. Schwarz, C. V. Is there a connection? The role of metamodeling knowledge in learning with models. In Keeping learning complex: The proceedings of the fifth international conference of the learning sciences; Bell, P.; Stevens, R.; Satwicz, T. NJ: Erlbaum, 2002.
  12. Schwarz, C. V.; White B. Y. Cogn. Instr. 2005, 23, 165. https://doi.org/10.1207/s1532690xci2302_1
  13. Sarah, G.; Dirk, K. J. Res. Sci. Teach. 2018, 55, 1313. https://doi.org/10.1002/tea.21453
  14. Cha, J. H.; Kim, Y. H.; Noh, T. H. J. Kor. Chem. Soc. 2004, 48, 638. https://doi.org/10.5012/jkcs.2004.48.6.638
  15. Crawford, B. A.; Cullin, M. J. Int. J. Sci. Educ. 2004, 26, 1379. https://doi.org/10.1080/09500690410001673775
  16. Gilbert, S. W. Model Building and a Definition of Science. Jornal of Research in Science Teaching, 1991, 28, 73. https://doi.org/10.1002/tea.3660280107
  17. Grosslight, L.; Unger, C.; Jay, E.; Smith, C. J. Res. Sci. Teach. 1991, 28, 799. https://doi.org/10.1002/tea.3660280907
  18. Harrison, A. G.; Treagust, D. F. Int. J. Sci. Educ. 2000, 22, 1011. https://doi.org/10.1080/095006900416884
  19. Lederman, N. G.; Bell. R. L.; Schwartz, R. S. J. Res. Sci. Teach. 2002, 39, 497. https://doi.org/10.1002/tea.10034
  20. Lim, H. J. J. Kor. Ass. Sci. Educ. 2005, 25, 297.
  21. Pluta, W.; Chinn, C.; Duncan, R. J. Res. Sci. Teach. 2011, 48, 486. https://doi.org/10.1002/tea.20415
  22. Snir, J.; Smith, C.; Raz, G. Sci. Educ. 2003, 87, 794. https://doi.org/10.1002/sce.10069
  23. Treagust, D. F.; Chittleborough, G. D.; Mamiala, T. L. Res. Sci. Educ. 2004, 34, 1. https://doi.org/10.1023/B:RISE.0000020885.41497.ed
  24. Yun, H. J.; Kim, H. B. J. Kor. Ass. Sci. Educ. 2018, 38, 541. https://doi.org/10.14697/JKASE.2018.38.4.541
  25. Park, K. J.; Ryu, C. R. J. Kor. Ass. Sci. Educ. 2017, 37, 625. https://doi.org/10.14697/jkase.2017.37.4.625
  26. Kim, S. K.; Paik, S. H. J. Chem. Educ. 2019, 96, 2271. https://doi.org/10.1021/acs.jchemed.8b00963
  27. Lee, Y. J.; Kim, Y. M.; Lee, B. J.; Shin, Y. J. J. Gifted/Talented Educ. 2016, 26, 405. https://doi.org/10.9722/JGTE.2016.26.2.405
  28. Shin, Y. J.; Ryu, C. L.; Kim, H. M.; Lee, Y. J. J. Gifted/Talented Educ. 2015, 25, 381. https://doi.org/10.9722/JGTE.2015.25.3.381
  29. Jung, H. C.; Ryu, C. L.; Chae, Y. J. J. Gifted/Talented Educ. 2012, 22, 243. https://doi.org/10.9722/JGTE.2012.22.2.243
  30. Jung, H. C.; Chae, Y. J.; Ryu, C. L. Gifted/Talented Educ. 2012, 22, 597. https://doi.org/10.9722/JGTE.2012.22.3.597
  31. Hong, Y. K. Kor. J. Phil. Educ. 2012, 47, 193.
  32. Lim, S. E. Exploring the impact of modeling instruction with metamodeling upon Elementary Students' metamodeling knowledge and modeling performance. Thesis, Seoul National University, 2019.
  33. Oakeshott, M.; Learning and teaching. In The Concept of Education; Peters, R. S.; London: Routledge & Kegan Paul, 1967; pp. 108-122.
  34. Oakeshott, M. Rationalism in Politics and Other Essays (new and expanded edition). Indianapolis: Liberty Press, 1991.
  35. Schon, D. A. The Reflective Practitioner: How Professionals Think in Action NY: Basic Books, 1983.
  36. Ryle, G. The Concept of Mind. NY: Barnes and Noble, Inc, 1984.
  37. Lee, H. W. Bruner: Structure of Knowledge. Paju: Kyoyookbook, 1988.
  38. Lee, H. W. Asia J. Educ. 2000, 1, 249.
  39. Pyeon, S. B. J. Philosophical Ideas 2014, 52, 97.
  40. Kim, J. S. J. Educ. Res. 2012, 20, 3.
  41. Grunkorn, J.; zu Belzen, A. U.; Kruger, D. Int. J. Sci. Educ. 2014, 36, 1651. https://doi.org/10.1080/09500693.2013.873155
  42. Treagust, D.; Chittleborough, G.; Mamiala, T. J. Sci. Educ. 2002, 24, 357. https://doi.org/10.1080/09500690110066485
  43. Patzke, C.; Kruuger, D.; Upmeier zu Belzen, A. Entwicklung von Modellkompetenz im Langsschnitt. In Lehr und Lernforschung in der Biologiedidaktik; Hammann, M.; Mayer, J.; Nicole, W. Eds.; Innsbruck: Studienverlag, 2015; pp. 43-58.
  44. Clough, E. E.; Driver, R. Sci. Educ. 1986, 70, 473. https://doi.org/10.1002/sce.3730700412
  45. Barowy, W.; Roberts, N. Modeling as inquiry activity in school science: What's the point? In Modeling and simulation in science and mathematics education; Feurzeig, W; Roberts, N. New York: Springer-Verlag, 1999; pp. 197-225.
  46. Carey, S.; Smith, C. Educational Psychologist. 1993, 28, 235 https://doi.org/10.1207/s15326985ep2803_4
  47. Schwarz, C. Developing students' understanding of scientific modeling. Unpublished doctoral dissertation, University of California, Berkeley, 1998.
  48. Schwarz, C.; White, B. Fostering middle school students' understanding of scientific modeling. Paper presented at the annual meeting of American Educational Research Association, San Diego, CA, 1998.
  49. White, B.; Schwarz, C. Alternative approaches to using modeling and simulation tools for teaching science. In Computer modeling and simulation in science education; Feurzeig, W.; Roberts N. New York: Springer-Verlag, 1999; pp. 226-256.
  50. Lee, J. K. J. Moral & Ethics Educ. 2017, 54, 153.
  51. Abd-El-Khalick, F. Sci. & Educ. 2013, 22, 2087. https://doi.org/10.1007/s11191-012-9520-2
  52. Lederman, N. G. Nature of science: Past, present and future. In Handbook of research on science education; Abell, S. K., Lederman, N. G., Eds; Mahwah: Lawrence Erlbaum Associates, 2007; pp 831-879.
  53. Schwarz, C. V.; Reiser, B. J.; Davis, E. A.; Kenyon, L.; Acher, A.; Fortus, D.; Shwartz, Y.; Hug, B.; Krajcik, J. J. Res. Sci. Teach. 2009, 46, 632. https://doi.org/10.1002/tea.20311

Cited by

  1. 고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석 vol.65, pp.1, 2021, https://doi.org/10.5012/jkcs.2021.65.1.37