DOI QR코드

DOI QR Code

Discovery of Epinastine-NSAID Hybrids as Potential Anti-inflammatory Agents: Synthesis and In Vitro Nitric Oxide Production Inhibitory Activity Study

  • Woo, Hyeong Ryeol (Department of Chemistry and Institute of Applied Chemistry, Hallym University) ;
  • Damodar, Kongara (Department of Chemistry and Institute of Applied Chemistry, Hallym University) ;
  • Lee, Yeontaek (Department of Life Science and Multidisciplinary Genome Institute, Hallym University) ;
  • Lim, Soon-sung (Department of Food Science and Nutrition and Institute of Korean Nutrition, Hallym University) ;
  • Jeon, Sung Ho (Department of Life Science and Multidisciplinary Genome Institute, Hallym University) ;
  • Lee, Jeong Tae (Department of Chemistry and Institute of Applied Chemistry, Hallym University)
  • Received : 2019.12.30
  • Accepted : 2020.02.07
  • Published : 2020.04.20

Abstract

A novel pharmacophore with epinastine (1) and NSAID moieties (2-5) was designed by molecular hybridization approach. The hybrid compounds 6-9 were synthesized by EDCI/HOBt or HATU-mediated coupling of 1 with salicylic acid (2), mefenamic acid (3), indomethacin (4) and naproxen (5), respectively, and were assessed for their inhibitory effect against NO production in LPS-induced RAW-264.7 macrophages in vitro. The Hybrids were found to exhibit significant NO production inhibitory effects with half-maximal inhibitory concentration (IC50) values ranging in between 15.96 ± 1.32 and 36.68 ± 2.53 μM and were non-cytotoxic to macrophages. Comparing the inhibition concentration (IC50), cytotoxicity concentration (CC50) and in vitro efficacy index (iEI), 6 (IC50 = 17.97 ± 1.92 μM; iEI = 11.13) and 9 (IC50 = 15.96 ± 1.32 μM; iEI = 12.53) were better suited than other hybrids as well as their parent compound. Our findings signify that hybrids 6 and 9 may serve as platforms for continued investigations for the development of more efficient anti-inflammatory agents.

Keywords

References

  1. Medzhitov, R. Nature 2008, 454, 428. https://doi.org/10.1038/nature07201
  2. Hamidzadeh, K.; Christensen S. M.; Dalby, E.; Chandrasekaran, P.; Mosser, D. M. Annu. Rev. Physiol. 2017, 79, 567. https://doi.org/10.1146/annurev-physiol-022516-034348
  3. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Oncotarget 2017, 9, 7204. https://doi.org/10.18632/oncotarget.23208
  4. Kopf, M.; Bachmann, M. F.; Marsland, B. J. Nat. Rev. Drug Discov. 2010, 9, 703. https://doi.org/10.1038/nrd2805
  5. Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami J. Aging Dis. 2018, 9, 143. https://doi.org/10.14336/AD.2017.0306
  6. Waller D.; Sampson, A. Medical Pharmacology and Therapeutics; Elsevier: Oxford, U. K., 2017; p 363.
  7. Mizoguchi, T.; Ozaki, M.; Ogino, N. Clin. Ophthalmol. 2017, 11, 1747. https://doi.org/10.2147/OPTH.S141279
  8. Pradhan, S.; Abhishek, K.; Mah F. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1135. https://doi.org/10.1517/17425250903117284
  9. Meunier, B. Acc. Chem. Res. 2008, 41, 69. https://doi.org/10.1021/ar7000843
  10. Bosquesi, P. L.; Melo, T. R.; Vizioli, E.O.; Santos, J. L.; Chung, M. C. Pharmaceuticals 2011, 4, 1450. https://doi.org/10.3390/ph4111450
  11. Shaveta; Mishra, S.; Singh P. Eur. J. Med. Chem. 2016, 124, 500. https://doi.org/10.1016/j.ejmech.2016.08.039
  12. Mohsin, N. A.; Ahmad, M. Turk. J. Chem. 2018, 42, 1. https://doi.org/10.3906/kim-1706-58
  13. Lee, J. M.; Damodar, K.; Lee, Y.; Lee, J. Y.; Jeon, S. H.; Lee, J. T. Bull. Korean Chem. Soc. 2019, 40, 761. https://doi.org/10.1002/bkcs.11814
  14. Lee, J. M.; Damodar, K.; Lee, Y.; Woo, H. R.; Suh, H. W.; Jeon, S. H.; Lee, J. T. Bull. Korean Chem. Soc. 2020, In press. https://doi.org/10.1002/bkcs.11990.
  15. Mazzio, E. A.; Bauer, D.; Mendonca, P.; Taka, E.; Soliman, K. F. J. Neuroimmunol. 2017, 302, 10. https://doi.org/10.1016/j.jneuroim.2016.11.012