DOI QR코드

DOI QR Code

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters

  • Received : 2019.11.18
  • Accepted : 2020.01.07
  • Published : 2020.04.20

Abstract

In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.

Keywords

References

  1. Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; Mac-Manus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202. https://doi.org/10.1002/adfm.201102263
  2. Kim, S.; Hong, K.; Kim, K.; Lee, I.; Lee, J.-L. J. Mater. Chem. 2012, 22, 2039. https://doi.org/10.1039/c1jm14218f
  3. Barreca, D.; Fornasiero, P.; Gasparotto, A.; Gombac, V.; Maccato, C.; Montini, T.; Tondello, E. ChemSusChem 2009, 2, 230. https://doi.org/10.1002/cssc.200900032
  4. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803. https://doi.org/10.1002/adma.200800596
  5. Shirk, J. S.; Bass, A. M. J. Chem. Phys. 1970, 52, 1894. https://doi.org/10.1063/1.1673230
  6. Tevault, D. E.; Mowery, R. L.; Marco, R. A. D.; Smardzewski, R. R. J. Chem. Phys. 1981, 74, 4342. https://doi.org/10.1063/1.441676
  7. Bagus, P. S.; Nelin, C. J.; Charles W. Bauschlicher, J. J. Chem. Phys. 1983, 79, 2975. https://doi.org/10.1063/1.446126
  8. Ozin, G. A.; Mitchell, S. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1983, 105, 6399. https://doi.org/10.1021/ja00359a006
  9. Igel, G.; Wedig, U.; Dolg, M.; Fuentealba, P.; Preuss, H.; Stoll, H.; Frey, R. J. Chem. Phys. 1984, 81, 2737. https://doi.org/10.1063/1.447945
  10. Bondybey, V. E.; English, J. H. J. Phys. Chem. 1984, 88, 2247. https://doi.org/10.1021/j150655a014
  11. Howard, J. A.; Sutcliffe, R.; Mile, B. J. Phys. Chem. 1984, 88, 4351. https://doi.org/10.1021/j150663a032
  12. Kasai, P. H.; Jones, P. M. J. Phys. Chem. 1986, 90, 4239. https://doi.org/10.1021/j100409a005
  13. Madhavan, P. V.; Newton, M. D. J. Chem. Phys. 1985, 83, 2337. https://doi.org/10.1063/1.449327
  14. Langhoff, S. R.; Bauschlicher Jr, C. W. Chem. Phys. Lett. 1986, 124, 241. https://doi.org/10.1016/0009-2614(86)87039-7
  15. Polak, M. L.; Gilles, M. K.; Ho, J.; Lineberger, W. C. J. Phys. Chem. 1991, 95, 3460. https://doi.org/10.1021/j100162a005
  16. Wu, H.; Desai, S. R.; Wang, L.-S. J. Chem. Phys. 1995, 103, 4363. https://doi.org/10.1063/1.470676
  17. Wang, L.-S.; Wu, H.; Desai, S. R.; Lou, L. Phys. Rev. B 1996, 53, 8028. https://doi.org/10.1103/physrevb.53.8028
  18. Chertihin, G. V.; Andrews, L.; Bauschlicher, C. W. J. Phys. Chem. A 1997, 101, 4026. https://doi.org/10.1021/jp9701653
  19. Hrusak, J.; Koch, W.; Schwarz, H. J. Chem. Phys. 1994, 101, 3898. https://doi.org/10.1063/1.467507
  20. Deng, K.; Yang, J.; Zhu, Q. J. Chem. Phys. 2000, 113, 7867. https://doi.org/10.1063/1.1316043
  21. Massobrio, C.; Pouillon, Y. J. Chem. Phys. 2003, 119, 8305. https://doi.org/10.1063/1.1610433
  22. Pouillon, Y.; Massobrio, C. Chem. Phys. Lett. 2002, 356, 469. https://doi.org/10.1016/S0009-2614(02)00385-8
  23. Pouillon, Y.; Massobrio, C. Appl. Surf. Sci. 2004, 226, 306. https://doi.org/10.1016/j.apsusc.2003.11.045
  24. Bae, G.-T.; Dellinger, B.; Hall, R. W. J. Phys. Chem. A 2011, 115, 2087. https://doi.org/10.1021/jp104177q
  25. Bae, G.-T. Bull. Korean Chem. Soc. 2016, 37, 638. https://doi.org/10.1002/bkcs.10735
  26. van Duin, A. C. T.; Bryantsev, V. S.; Diallo, M. S.; Goddard, W. A.; Rahaman, O.; Doren, D. J.; Raymand, D.; Hermansson, K. J. Phys. Chem. A 2010, 114, 9507. https://doi.org/10.1021/jp102272z
  27. Rahaman, O.; van Duin, A. C. T.; Bryantsev, V. S.; Mueller, J. E.; Solares, S. D.; Goddard, W. A.; Doren, D. J. The Journal of Physical Chemistry A 2010, 114, 3556. https://doi.org/10.1021/jp9090415
  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford, CT, USA, 2009.
  29. Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. https://doi.org/10.1016/j.commatsci.2005.04.010