DOI QR코드

DOI QR Code

Lack of Sub-microscopic Representation Ability of 12th Grade Science Students in Various Acid and Base Problem Solving Processes

다양한 산·염기 문제해결과정에서 드러난 고등학교 3학년 이과 학생들의 준미시적 표상화 능력의 결여

  • Received : 2019.07.22
  • Accepted : 2019.12.02
  • Published : 2020.02.20

Abstract

The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.

이 연구는 산·염기 반응의 준미시적 표상화 과정에서 학생들이 부딪치는 문제점을 파악하는 것이다. 이를 위하여 다양한 산·염기 모델을 학습한 고등학교 3학년 이과 학생들 30명을 선정하였다. 학생들의 준미시적 표상화 능력을 파악하기 위하여 한 종류의 용질과 용매 상황, 두 종류의 용질과 용매 상황, 용매가 물인 경우와 물이 아닌 경우 등 다양한 맥락의 9 문항을 개발하였다. 모든 문항에서 화학변화 개념의 결여가 지속적으로 나타났다. 수용액 상황과 비수용액 맥락에서, 암모니아를 용질이나 용매로 제시한 문항에서 화학결합 개념의 결여 빈도는 높았다. 그리고 이온화도 개념 결여의 비율도 매우 높았다. 따라서 화학 교사들은 다양한 산·염기 문제를 푸는 상황에서 학생들이 부딪치는 어려움을 분석함으로써 학생들의 준미시적 표상화 능력을 높여줄 수 있다는 것을 알아야 한다.

Keywords

References

  1. Nakhleh, M. B. J. Chem. Educ. 1992, 69, 191. https://doi.org/10.1021/ed069p191
  2. Garnett, P. J.; Garnett, P. J.; Hackling, M. W. Stud. Sci. Educ. 1995, 25, 69. https://doi.org/10.1080/03057269508560050
  3. Paik, S. H. J. Chem. Educ. 2015, 92, 1484. https://doi.org/10.1021/ed500891w
  4. Taber, K. S. Int. J. Sci. Educ. 2000, 22, 399. https://doi.org/10.1080/095006900289813
  5. Taber, K. S. Int. J. Sci. Educ. 2008, 30, 1027. https://doi.org/10.1080/09500690701485082
  6. Talanquer, V. J. Chem. Educ. 2006, 83, 811. https://doi.org/10.1021/ed083p811
  7. Teo, T. W.; Goh, M. T.; Yeo, L. W. Chem. Educ. Res. Pract. 2014, 15, 470. https://doi.org/10.1039/C4RP00104D
  8. Taber, K. S.; Coll, R. K. In Chemical Education: Towards Research-Based Practice; Springer: Dordrecht, 2002; pp 213-234.
  9. Watts, D. M.; Gilbert, J. K. Res. Sci. & Tech. Educ. 1983, 1, 161. https://doi.org/10.1080/0263514830010204
  10. Tumay, H. Chem. Educ. Res. Pract. 2014, 15, 366. https://doi.org/10.1039/C4RP00024B
  11. Tumay, H. Chem. Educ. Res. Pract. 2016, 17, 229. https://doi.org/10.1039/C6RP00008H
  12. Schmidt, S. R. Mem. Cognit. 1991, 19, 523. https://doi.org/10.3758/BF03197149
  13. Wandersee, J. H.; Mintzes, J. J.; Novak, J. D. In Handbook of Research on Science Teaching and Learning; Gable, D. L., Ed.; Macmillan Publishing Company: NY, 1994.
  14. Sanger, M. J.; Greenbowe, T. J. J. Chem. Educ. 1999, 76, 853. https://doi.org/10.1021/ed076p853
  15. Schmidt, H. J.; Baumgartner, T.; Eybe, H. J. Res. Sci. Teach 2003, 40, 257. https://doi.org/10.1002/tea.10076
  16. Demircioglu, G.; Ayas, A.; Demircioglu, H. Chem. Educ. Res. Pract. 2005, 6, 36. https://doi.org/10.1039/b4rp90003k
  17. Gilbert, J. K.; Treagust, D. F. In Multiple Representations in Chemical Education; Springer; Dordrecht, 2009; pp 1-8.
  18. Johnstone, A. H. J. Comput. Assist. Learn 1991, 7, 75. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
  19. Johnstone, A. H. Chem. Educ. Res. Pract. 2000, 1, 9. https://doi.org/10.1039/A9RP90001B
  20. Jensen, A. R. The G Factor; Praeger: Westport, C. T., 1998.
  21. Chittleborough, G.; Treagust, D. F. Chem. Educ. Res. Pract. 2007, 8, 274. https://doi.org/10.1039/b6rp90035f
  22. Talanquer, V. Int. J. Sci. Educ. 2011, 33, 179. https://doi.org/10.1080/09500690903386435
  23. Taber, K. S. Chem. Educ. Res. Pract. 2013, 14, 156. https://doi.org/10.1039/C3RP00012E
  24. Kousathana, M.; Demerouti, M.; Tsaparlis, G. Sci. & Educ. 2005, 14, 173. https://doi.org/10.1007/s11191-005-5719-9
  25. Romine, W. L.; Todd, A. N.; Clark, T. B. Sci. Educ. 2016, 100, 1150. https://doi.org/10.1002/sce.21240
  26. Furio-Mas, C.; Calatayud, M. L.; Guisasola, J.; Furio- Gomez, C. Int. J. Sci. Educ. 2005, 27, 1337. https://doi.org/10.1080/09500690500102896
  27. Creswell, J. W.; Miller, D. L. Theory Into Practice 2000, 39, 124. https://doi.org/10.1207/s15430421tip3903_2
  28. Oxtoby, D. W.; Gillis, H. P.; Butler, L. J. Principles of Modern Chemistry, 7th ed.; Cengage Learning: 2015.
  29. Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman & Company: 2007.