DOI QR코드

DOI QR Code

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang (Departments of Anatomy and Neurobiology, School of Medicine, KyungHee University) ;
  • Jung, Su Young (Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine) ;
  • Kim, Myung Gu (Department of Otorhinolaryngology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Kim, Young Il (Medical Science Research Institute, KyungHee University Medical Center) ;
  • Kim, Sang Hoon (Department of Otorhinolaryngology, School of Medicine, KyungHee University) ;
  • Yeo, Seung Geun (Medical Science Research Institute, KyungHee University Medical Center)
  • Received : 2020.03.06
  • Accepted : 2020.04.30
  • Published : 2020.10.20

Abstract

Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A6A1A03025124).

References

  1. Dlugonska H. Autophagy as a universal intracellular process. A comment on the 2016 Nobel Prize in Physiology or Medicine. Ann Parasitol 2017;63:153-7.
  2. Filfan M, Sandu RE, Zavaleanu AD, GresiTa A, Glavan DG, Olaru DG, et al. Autophagy in aging and disease. Rom J Morphol Embryol 2017;58:27-31.
  3. Paparella MM, Schachern PA, Cureoglu S. Chronic silent otitis media. ORL J Otorhinolaryngol Relat Spec 2002;64:65-72. https://doi.org/10.1159/000057783
  4. da Costa SS, Paparella MM, Schachern PA, Yoon TH, Kimberley BP. Temporal bone histopathology in chronically infected ears with intact and perforated tympanic membranes. Laryngoscope 1992;102:1229-36. https://doi.org/10.1288/00005537-199211000-00005
  5. Paparella MM, Kim CS, Goycoolea MV, Giebink S. Pathogenesis of otitis media. Ann Otol Rhinol Laryngol 1977;86:481-92. https://doi.org/10.1177/000348947708600407
  6. Bhutta MF, Thornton RB, Kirkham LS, Kerschner JE, Cheeseman MT. Understanding the aetiology and resolution of chronic otitis media from animal and human studies. Dis Model Mech 2017;10:1289-300. https://doi.org/10.1242/dmm.029983
  7. Hoon KS, Gu KM, Seon SH, Su KS, Il KY, Geun YS. Lower Beclin-1 mRNA levels in pediatric compared with adult patients with otitis media with effusion. J Int Adv Otol 2018;14:48-52. https://doi.org/10.5152/iao.2018.4481
  8. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013;368:651-62. https://doi.org/10.1056/NEJMra1205406
  9. Jiang P, Mizushima N. Autophagy and human diseases. Cell Res 2014;24:69-79. https://doi.org/10.1038/cr.2013.161
  10. Hsu P, Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862:114-29. https://doi.org/10.1016/j.bbalip.2016.08.003
  11. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: how does it work? Annu Rev Biochem 2016;85:685-713. https://doi.org/10.1146/annurev-biochem-060815-014556
  12. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306:990-5. https://doi.org/10.1126/science.1099993
  13. Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004;14:70-7. https://doi.org/10.1016/j.tcb.2003.12.002
  14. Rich KA, Burkett C, Webster P. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 2003;5:455-68. https://doi.org/10.1046/j.1462-5822.2003.00292.x
  15. Dorn BR, Dunn WA Jr, Progulske-Fox A. Bacterial interactions with the autophagic pathway. Cell Microbiol 2002;4:1-10. https://doi.org/10.1046/j.1462-5822.2002.00164.x
  16. Coers J, Monahan C, Roy CR. Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nat Cell Biol 1999;1:451-3. https://doi.org/10.1038/15687
  17. Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, et al. New insights into beclin-1: evolution and pan-malignancy inhibitor activity. Adv Cancer Res 2018;137:77-114. https://doi.org/10.1016/bs.acr.2017.11.002
  18. Abramson M, Gross J. Further studies on a collagenase in middle ear cholesteatoma. Ann Otol Rhinol Laryngol 1971;80:177-85. https://doi.org/10.1177/000348947108000203
  19. Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 2015;125:234-40. https://doi.org/10.1002/lary.24890
  20. Olszewska E, Wagner M, Bernal-Sprekelsen M, Ebmeyer J, Dazert S, Hildmann H, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol 2004;261:6-24. https://doi.org/10.1007/s00405-003-0623-x
  21. Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL. Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 1986;102:1164-72. https://doi.org/10.1083/jcb.102.4.1164
  22. Orisek BS, Chole RA. Pressures exerted by experimental cholesteatomas. Arch Otolaryngol Head Neck Surg 1987;113:386-91. https://doi.org/10.1001/archotol.1987.01860040048015
  23. Thomsen J, Jorgensen MB, Bretlau P, Kristensen HK. Bone resorption in chronic otitis media. A histological and ultrastructural study. I. Ossicular necrosis. J Laryngol Otol 1974;88:975-81. https://doi.org/10.1017/S0022215100079639
  24. Ahn JM, Huang CC, Abramson M. Third place--Resident Basic Science Award 1990. Interleukin 1 causing bone destruction in middle ear cholesteatoma. Otolaryngol Head Neck Surg 1990;103:527-36. https://doi.org/10.1177/019459989010300403
  25. Chung JW, Yoon TH. Different production of interleukin-1alpha, interleukin-1beta and interleukin-8 from cholesteatomatous and normal epithelium. Acta Otolaryngol 1998;118:386-91. https://doi.org/10.1080/00016489850183485
  26. Schilling V, Negri B, Bujia J, Schulz P, Kastenbauer E. Possible role of interleukin 1 alpha and interleukin 1 beta in the pathogenesis of cholesteatoma of the middle ear. Am J Otol 1992;13:350-5.
  27. Chole RA. Cellular and subcellular events of bone resorption in human and experimental cholesteatoma: the role of osteoclasts. Laryngoscope 1984;94:76-95. https://doi.org/10.1002/lary.5540940117
  28. Erkan M, Aslan T, Sevuk E, Guney E. Bacteriology of chronic suppurative otitis media. Ann Otol Rhinol Laryngol 1994;103:771-4. https://doi.org/10.1177/000348949410301005
  29. Brook I. Aerobic and anaerobic bacteriology of cholesteatoma. Laryngoscope 1981;91:250-3.
  30. Sade J, Berco E, Buyanover D, Brown M. Ossicular damage in chronic middle ear inflammation. Acta Otolaryngol 1981;92:273-83. https://doi.org/10.3109/00016488109133263