DOI QR코드

DOI QR Code

대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate

  • 김형준 (전주대학교 일반대학원 건설공학과) ;
  • 정흥진 (전주대학교 토목환경공학과)
  • 투고 : 2020.10.22
  • 심사 : 2020.11.27
  • 발행 : 2020.12.31

초록

본 연구에서는 교량구조물에 활용할 수 있는 폭 100mm 이상의 대형 탄소판을 고정할 수 있는 쐐기형 정착구를 설계하기 위해서, 주요설계변수인 쐐기의 각도, 정착블록-쐐기 사이의 마찰계수 등을 기준으로 거동특성을 수치해석방법으로 분석하였다. 설계변수 별로 탄소판의 응력상태를 계산하고, 복합재료 파괴기준에 의하여 정착구의 극한상태에서의 성능을 평가하였고, 이를 바탕으로 정착구의 최적설계 제원을 결정하였다. 실물실험을 통하여 최적설계된 정착구의 성능을 검증하였으며, 본 연구의 결과는 대형 구조물을 보강하기 위한 탄소판 정착구의 최적설계에 활용될 수 있을 것으로 판단된다.

In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

키워드

참고문헌

  1. Park, Y. H., Park, J. S., Jung, W. T., and Yu, Y. J. (2006), Development of strengthening methods for deteriorated concrete bridges, Research report of Korea Institute of Civil Engineering and Building Technology, 082, 435-503.
  2. Park, J. S., Park, Y. H., and Jung, W. T. (2008), Anchorage efficiency of mold-type anchorage for CFRP plates, Journal of Korea Concrete Institute, 20(1), 169-172.
  3. Mohee, F. M.,and Al-Mayah, A. (2017), Development of an innovative prestressing CFRP plate anchor: Numerical modelling and parametric study, Composite Structures, 177, 1-12. https://doi.org/10.1016/j.compstruct.2016.12.039
  4. Mohee, F. M., Al-Mayah, A. and Plumtree, A. (2017), Development of a novel prestressing anchor for CFRP plates: Experimental investigations, Composite Structures, 176, 20-32. https://doi.org/10.1016/j.compstruct.2017.05.011
  5. Mohee, F. M., Al-Mayah, A. and Plumtree, A. (2016), Anchors for CFRP plates: Stste-of-the-art review and future potential, Composites Part B, 90, 432-442. https://doi.org/10.1016/j.compositesb.2016.01.011
  6. Shin, E. S. (2014), Mechanics & Applications of Composite Materials, Chonbuk National University Press, chapter 6, 1-9.
  7. Ye, H., Zhang, Q., Liu, C., Wu, C., and Duan, Z. (2019), Failure mechanisms governing anchoring force of friction-based wedge anchorage for prestressed CFRP plate, Composite Structures, 225, 111142, 1-9.
  8. Chung, H. J., and Ryu, Y. J. (2017), Design of Anchor for Wide CFRP Plate, Proceedings of Computational Structural Engineering Institute of Korea Annual Conference, 30(1), 70-71.
  9. Wang, B., Xiong, J., Wang, X., Ma, L., Zhang, G., Wu, L.,and Feng. J. (2013), Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact, Materials and Design, 50, 140-148. https://doi.org/10.1016/j.matdes.2013.01.046
  10. Camanho, P. (2002), Failure criteria for fibre-reinforced polymer composites, Journal of DEMEGI, PP Camanho 2002, 1-13.
  11. Ha, G., Ha, Y. (2014), Evaluation of Structural Performance of Reinforced Concrete Beams using Hybrid Retrofitting with Groove and Embedding FRP Rod and CFRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(4), 41-49. https://doi.org/10.11112/JKSMI.2014.18.4.041
  12. Korea Construction Standards Center, KDS 14 31 25, 13-14.
  13. Florida State University, .
  14. Simulia, Abaqus for Windows (2018).