DOI QR코드

DOI QR Code

금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures

  • 박광민 ((재)한국건설생활환경시험연구원, 건설기술연구센터) ;
  • 박명주 (상원소재)
  • 투고 : 2020.10.19
  • 심사 : 2020.10.30
  • 발행 : 2020.10.30

초록

본 연구에서는 금속 적층 제조로 출력한 격자 구조체의 내부 공극에 반응성 아크릴 화합물을 충진시켜, 밀도 제어가 가능한 밀실 복합 격자 구조체를 제작하는 것을 목표로 한다. 또한 본 격자 구조체를 건설분야에 적용하기 위하여 반응성 아클릴 화합물에 보통 포틀랜드 시멘트를 첨가함으로써 콘크리트와의 부착성능을 향상시킨 부착력 증진 반응성 아크릴 화합물을 검토하였다. 최종적으로 제조한 부착력 증진 반응성 아크릴 화합물을 격자 구조체 내부에 충진하여 밀도 제어형 기능성 복합 격자 구조체(Hybrid Lattice structure)의 비중, 흡수율 및 부착강도를 검토하였다. 그 결과, 밀도 제어 가능, 흡수율 1.0 % 이하 및 재령 1일 부착강도 1.78 MPa ~ 1.98 MPa의 결과물을 도출하였다.

The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.

키워드

참고문헌

  1. M. Mazur, M. Leary, M. McMillan, S. Sun, D. Shidid, and M. Brandt. (2017), Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM), Laser Addictive Manufacturing, Materials, Design, Technologies, and Applications, 88, 119-161.
  2. Xiaofei Cao, Shengyu Duan, Jun Liang, Weibin Wen, and Daining Fang. (2018), Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section, International Journal of Mechanical Sciences, 145, 53-63. https://doi.org/10.1016/j.ijmecsci.2018.07.006
  3. D. Xiao, Z. Dong, Y. Li, W. Wu, and D. Fang. (2019), Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis, Materials Science and Engineering: A, 758, 163-171. https://doi.org/10.1016/j.msea.2019.04.116
  4. ASTM F2792-12(2015), standard terminology for additive manufacturing technologies.
  5. Cheng, L., Zhang, P., Biyikli, E., Bai, J., and Robbins, J.,(2017), Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation, Rapid Prototyping Journal, 23(4), 660-677. https://doi.org/10.1108/RPJ-04-2016-0069
  6. P. Zhang, J. Toman, Y. Yu, E. Biyikli, M. Kirca, M. Chmielus, and A. To. (2015), Efficient design-optimization of variable-density hexagonal cellular Structure by AM: Theory and validation, Journal of Manufacturing Sciences and Engineering, 137.
  7. R. Rahmani, M. Rosenberg, A. Ivask, and L. Kollo. (2019), Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques, MDPI Metals, 9(8).