DOI QR코드

DOI QR Code

고 감쇠 폴리머 콘크리트의 진동 특성에 관한 해석적 연구

Analytical Study on Vibrational Properties of High Damping Polymer Concrete

  • 김정진 (롯데건설 기술연구원) ;
  • 김종 (청주대학교 휴먼환경디자인학부 건축공학전공)
  • 투고 : 2020.09.17
  • 심사 : 2020.09.25
  • 발행 : 2020.10.30

초록

에폭시 계열의 합성수지와 골재를 혼합함으로써 진동저감 성능을 크게 증가시킨 고감쇠 콘크리트에 대한 연구가 활발히 진행되고 있는데, 이러한 폴리머 혼입 고감쇠 콘크리트는 배합 시, 시멘트와 물을 사용하지 않으므로, 일반 콘크리트에 비해 경화시간이 매우 짧고, 물리적 특성 및 동특성 등이 매우 우수하여, 층간소음 및 진동 저감이 요구되는 건축구조물에의 폭넓은 활용이 기대되고 있다. 한편, 폴리머 혼입 고감쇠 콘크리트의 활용성을 넓히기 위한 방안으로, 보강재 분야에 대한 연구가 다양하게 진행되어 왔으나, 폴리머 콘크리트가 일반 콘크리트 및 기존 방진보강재를 완전히 대체하기 위해서는 물리적 특성, 동적 물성, 생산성 및 현장 적용성 등을 고려하여 진동저감 성능에 대한 전반적인 검토가 필요한 실정이다. 본 연구에서는 폴리머 콘크리트의 에폭시 혼입비율별 물리적, 동적 특성을 일반 콘크리트와 비교한 결과, 탄성계수는 비슷한 반면, 압축, 인장, 휨강도가 상당히 우수한 결과를 보였으며, 특히 인장강도는 4~10배 이상 큰 차이를 보였으며, 주파수 응답함수와 감쇠비를 Modal 시험과 유한요소해석 모델을 통해 도출하여 검토한 결과, 폴리머 콘크리트의 동적 강성이 일반 콘크리트 보다 20% 크게 나타났고, 감쇠비는 약 3배 정도 높은 것으로 나타났다.

Research on high-attenuation concrete for the vibration reduction performance by mixing epoxy-based synthetic resins and aggregates is actively being conducted. The curing time of high-attenuation concrete is very short because water is not used, and the physical and dynamic properties are very excellent. therefore, it is expected to be widely used in building structures requiring reduction of interior-floor noise and vibration. Furthermore, A way to expand the applicability of the high-damping concrete mixed with polymer in the field of reinforcement material have been variously studied. In order to replace polymer concrete with ordirnary concrete and existing anti-vibration reinforcement material, it is necessary to review overall vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio compared with ordirnary concrete. As a result, the elastic modulus was similar. On the other hand, polymer concrete for the compressive, tensile, and flexural strengths was quite more excellent. In particular, the measured tensile strength of polymer concrete was 4-10 times higher than that of ordirnary concrete. it was a big difference, and the frequency response function and damping ratio was studied through modal test and finite element analysis model. The dynamic stiffness of polymer concrete was 20% greater than that of ordirnary concrete, and the damping ratio of polymer concrete was approximately 3 times more than that of ordirnary concrete.

키워드

참고문헌

  1. W. G. Wong, Ping Fang, J. K. Pan. (2003), Dynamic properties impact toughness and abrasiveness of polymer-modified pastes by using nondestructive tests, Cement and Concrete Research, 33(9), 1371-1374. https://doi.org/10.1016/S0008-8846(03)00069-3
  2. F. Cortes and G. Castillo. (2007), Comparison between the dynamical properties of polymer concrete and grey cast iron for machine tool applications, Material and Design, 28(5), 1461-1466. https://doi.org/10.1016/j.matdes.2006.03.012
  3. I.Y.Jang, H.B.Lee, K.J.Byun. (1992), Experimental study on the material characteristics and flexural behavior of ultra high strength concrete, Journal of the Korea Concrete Institute, 4(2), 111-118.
  4. J. Wongpa, K. Kiattikomol, C. Jaturapitakkul, Chindaprasirt. (2007), Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete, Material and Design, 31(10), 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012
  5. Rajoria, H., and Jalili, N. (2005), Passive Vibration Damping Enhancement Using Carbon Nanotube-epoxy Reinforced Composites, Composites Science and Technology, 65(14), 2079-2093. https://doi.org/10.1016/j.compscitech.2005.05.015
  6. Jeon, W., and Lee, J. Y. (2016), Efficient Damping of Vibration Using and Acoustic Black Hole, Proceedings of the KSNVE 2016 annual Spring Conference, 202-203.
  7. Yoo, S. Y., Yeon, J. O. and Jeon, J. Y.(2009), Analysis and Evaluation of Impact Sound Insulation of Concrete Floor Structures in Response to Characteristics of Heavy-weight Impact Sources, Transactions of the Korean Society for Noise and Vibration Engineering, 19(10), 1062-1068. https://doi.org/10.5050/KSNVN.2009.19.10.1062
  8. Lee, W. H., Ivan, R., Haan, C. H., Han, S. H. (2009), Pilot Experiments of Estimated Proper Ratio of Latex Polymer Concrete for Reducing Floor Impact Sound, Proceedings of the KSNVE Annual Spring Conference, 532-533.
  9. Cho, H. N.(2000), Flexural Behavior of Damaged Reinforced Concrete Beams repaired wity Epoxy Mortar, Master's Thesis of Ewha University.
  10. Kwon, S. M, Ahn, S. K, Koh, H, I and Park, J, H. (2018), Analysis of Dynamic characteristics of complex polymer concrete according to structure of polymer concrete, Proceedings of the KSNVE 2018 annual Spring Conference, 202.
  11. C. Y. Park and B. Y. Sohn.(1997), Estimation of loss energy from the measurement returning time of rebound for carbon black-filled natural rubber compounds, Journal of Korean Inst. Chem. Eng, 35, 154.
  12. Saliba, J., Roziere, E., Grondin, F., and Loukill, A. (2011), Influence of Shrinkage-Reducing Admixture on Plastic and Long-Term Shrinkage, Cement and Concrete Composites, 33(2), 209-217. https://doi.org/10.1016/j.cemconcomp.2010.10.006
  13. Kobayashi, T and Ohama Y. (1984), Low-Temperature Curing of Polymethyl Methacrylate Polymer Concrete, Transportation Research Record 1003, Transportation Research Board(ISSN: 0361-1981),15-18.
  14. Ahn, N., Park, D. K,. Lee, J and Lee, M. K. (2009), Structureal Test of Precast Polymer Concrete, Journal of Applied Polymer Science, 114(3), 1370-1376. https://doi.org/10.1002/app.30731
  15. Ahmad, S., Elahi, A., Barbhuiya, S. A., and Farid, Y. (2012), Use of Polymer modified mortar in controlling cracks in reinforced concrete beams, Construction and Building Materials, 27, 91-96. https://doi.org/10.1016/j.conbuildmat.2011.08.023
  16. Joo, M. J., Lee, Y. S., Hong, G. S., Hong, Y. K., and Choi, O. C. (1997), An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer resin, Korea Institute for Structural Maintenance and Inspection, 1(10, 107-112.