DOI QR코드

DOI QR Code

수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members

  • 홍상현 (SD E&C(주)) ;
  • 오종원 (롯데건설 토목사업본부) ;
  • 노화성 (전북대학교 토목공학과 방제연구센터)
  • 투고 : 2020.08.24
  • 심사 : 2020.10.06
  • 발행 : 2020.10.30

초록

상판과 아치리브, 수직재로 구성된 개복식 상로 아치교는 아치리브 지점 조건과 차량 이동속도에 따라 지점에서의 축력과 모멘트의 정도가 달라진다. 또한 충격계수 정의에는 상판 변위응답뿐만 아니라 다양한 종류의 응답이 고려된다. 본 논문은 양단 고정지점 콘크리트 개복식 상로 아치교에 대해 측정 위치와 응답변수, 수직재의 간격비에 따른 충격계수를 분석하였다. 수직재 간격비가 1/9.375인 기저모델의 경우 이동하중 진입 반대 쪽 아치리브 지점에서 모멘트 기반 충격계수가 가장 큰 값을 보였으며, 이 값은 상판 중앙부 인접지간 변위응답 기반 최대 충격계수와는 비슷한 수준이지만 동일 위치에서의 축력 기반 충격계수에 비해 19% 높은 값이다. 수직재 배열에 있어서 간격비를 기저모델에 비해 1/2로 감소시켰을 경우, 모멘트 기반 최대 충격계수는 기저모델과 유사한 수준이었지만 간격비를 2배 증가시켰을 경우는 기저모델 대비 4.4배 증가하였다.

An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

키워드

참고문헌

  1. ABAQUS (2020). ABAQUS/CAE user's manual. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, R.I.
  2. Brady, S. P., O'Brien, E. J., and Znidaric, A. (2006), Effect of Vehicle Velocity on the Dynamic Amplification of a Vehicle Crossing a Simply Supported Bridge, Journal of Bridge Engineering, 11(2), 241-249. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:2(241)
  3. Caglayan, B. O., Ozakgul, K., and Tezer, O. (2012), Assessment of a Concrete Arch Bridge using Static and Dynamic Load Tests, Structural Engineering and Mechanics, 41(1), 83-94. https://doi.org/10.12989/sem.2012.41.1.083
  4. Chatterjee, P. K. and Datta, T. K. (1995), Dynamic Analysis of Arch Bridges under Travelling Loads, International Journal of Solids and Structures, 32(11), 1585-1594. https://doi.org/10.1016/0020-7683(94)00193-Z
  5. Garrett, G. P. (2007), Analytical Load Rating of an Open-Spandrel Arch Bridge: Case Study, Journal of Bridge Engineering, 12(1), 13-20. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:1(13)
  6. Goicolea, J., Dominguez, J., Gabaldon, F., and Navarro, J. (2002), Resonant Effects in the Short Span High Speed Railway Bridge: Modeling and Design Issues, Proceedings of the 4th International Conference on Structural Dynamics, Taylor & Francis, Munich, Germany, 2, 1077.
  7. Magalhaes, F., Cunha, A., and Caetano, E. (2008), Dynamic Monitoring of a Long Span Arch Bridge, Engineering Structures, 30(11), 3034-3044. https://doi.org/10.1016/j.engstruct.2008.04.020
  8. Jang, J. H., Min, D. J., and Kim, M. Y. (2016), Investigation of Resonance Occurrence Conditions by Dynamic Interaction Analysis between Arch Bridge and KTX Trains, Journal of the Earthquake Engineering Society of Korea, 20(2), 103-112 (in Korean). https://doi.org/10.5000/EESK.2016.20.2.103
  9. Ju, S.-H. and Lin, H.-T (2003), Numerical Investigation of a Steel Arch Bridge and Interaction with High-Speed Trains, Engineering Structures, 25, 241-250. https://doi.org/10.1016/S0141-0296(02)00148-7
  10. Kawashima, K., and Mizoguti, A. (2000), Seismic Response of a Reinforced Concrete Arch Bridge, Proceedings of the 12th World Conference on Earthquake Engineering, 1824.
  11. Kim, I. T., Kwon, Y. B., Lee, W. S., and Lee, Y. H. (2005), The Ultimate Behavior of the Circular Hollow Section Arch Rib for Steel Arch Deck Bridges, Journal of Korean Society of Civil Engineering, 25(3A), 511-519 (in Korean).
  12. Ministry of Land, Transport and Maritime Affairs (2010) Design Code for Highway Bridge (in Korea). Korea Road & Transportation Association.
  13. Park, J. S. and Kang, S. Y. (2012), A Numerical Study on In-plane Nonlinear Buckling Strengths of New Arches Subjected to Uniformly Distributed Loading, Journal of the Korea Academia-Industrial Cooperation Society, 13(1), 399-405 (in Korean). https://doi.org/10.5762/KAIS.2012.13.1.399
  14. Park, Y. M., Heo, T. Y., Lee, P. G., and Noh, K. B. (2004), Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs, Journal of Korean Society of Steel Construction, 16(6), 759-768 (in Korean).
  15. Wolff, M., and Starossek, U. (2008), Robustness Assessment of a Cable-stayed Bridge, Proceedings of the 4th International Conference on Bridge Maintenance, Safety and Management, IABMAS, Seoul, Korea, 690.
  16. Yim, S. S., Kong, M. S., and Yoo, Y. S. (2010), Dynamic Analysis of Long-span Arch Bridge by Fracturing Hangers, Journal of the Korea Institute for Structural Maintenance and Inspection, 14(2), 113-120 (in Korean). https://doi.org/10.11112/jksmi.2010.14.2.113