DOI QR코드

DOI QR Code

Band-switchable Terahertz Metamaterial Based on an Etched VO2 Thin Film

식각된 VO2 박막을 이용한 밴드-전환형 테라헤르츠파 메타물질

  • Ryu, Han-Cheol (Department of IT Convergence Engineering, Sahmyook University)
  • Received : 2019.11.12
  • Accepted : 2019.12.01
  • Published : 2020.02.25

Abstract

We propose a band-switchable terahertz metamaterial based on an etched vanadium dioxide (VO2) thin film. A line of etched VO2 thin film was placed in the center gap of the split square-loop shape for the tunability of the metamaterial. The resonance frequency of the metamaterial can be switched from the 1.4 THz band to the 0.7 THz band, according to the insulator-metal phase transition in the VO2 thin film. The absolute difference in the transmittance of the metamaterial was 78.5% and 65.8% at 0.7 THz and 1.4 THz respectively, according to the band switching. The differential phase shift was around 90°, and the transmittance was stably maintained between 40% and 60% in the middle band of the two switchable resonance-frequency bands.

본 논문에서는 온도 변화에 따라 절연체-금속 상전이 특성을 보이는 이산화바나듐(VO2)를 식각한 도선과 금속 도선을 조합한 밴드-전환형 테라헤르츠 메타물질을 제시하였다. 갭을 가지는 금속 사각 구조 가운데 식각된 VO2 도선을 위치시킨 구조와 VO2 상전이 특성을 이용하여 제안된 메타물질의 가변성을 확보하였다. 설계한 VO2 기반 메타물질은 VO2의 절연체-금속 상전이 특성에 따라 공진 주파수가 1.4 THz에서 0.7 THz으로 전환되었다. 이때, 제안한 메타물질의 절대 투과율은 0.7 THz와 1.4 THz에서 각각 78.5%와 65.8%로 높은 변화율을 가지고, 전환이 가능한 두 공진 주파수 중간 대역에서 40%와 60% 사이의 안정적인 투과율을 보이면서 균일하게 90도의 높은 차등 위상 변위 특성을 보였다.

Keywords

References

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photonics Rev. 5, 124-166 (2011). https://doi.org/10.1002/lpor.201000011
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  3. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007). https://doi.org/10.1109/JPROC.2007.898903
  4. H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, "Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 ${\mu}m$ $\lambda$/4 phase-shifted dual-mode laser," Opt. Express 20, 25990-25999 (2012). https://doi.org/10.1364/OE.20.025990
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008). https://doi.org/10.1038/nature07247
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). https://doi.org/10.1126/science.1133628
  7. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011). https://doi.org/10.1038/nature09776
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  9. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photonics 3, 148-151 (2009). https://doi.org/10.1038/nphoton.2009.3
  10. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nat. Nanotechnol. 6, 630-634 (2011). https://doi.org/10.1038/nnano.2011.146
  11. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, "Broadband graphene terahertz modulators enabled by intraband transitions," Nat. Commun. 3, 780 (2012). https://doi.org/10.1038/ncomms1787
  12. S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, "Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials," Opt. Express 25, 15938-15946 (2017). https://doi.org/10.1364/OE.25.015938
  13. H. C. Ryu, "Electrically controllable terahertz wave modulator based on a metamaterial and $VO_{2}$ thin film," Korean J. Opt. Photon. 25, 279-285 (2014). https://doi.org/10.3807/KJOP.2014.25.5.279
  14. J.-H. Shin, K. H. Park, and H.-C. Ryu, "Electrically controllable terahertz square-loop metamaterial based on $VO_{2}$ thin film," Nanotechnology 27, 195202 (2016). https://doi.org/10.1088/0957-4484/27/19/195202
  15. D. J. Park, J. H. Shin, K. H. Park, and H. C. Ryu, "Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on $VO_{2}$," Opt. Express 26, 17397-17406 (2018). https://doi.org/10.1364/OE.26.017397
  16. J.-H. Shin, S.-P. Han, M. Song, and H.-C. Ryu, "Gradual tuning of the terahertz passband using a square-loop metamaterial based on a W-doped $VO_{2}$ thin film," Appl. Phys. Express 12, 032007 (2019). https://doi.org/10.7567/1882-0786/ab0395
  17. F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-J. Chang, "State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping," Opt. Lett. 38, 1582-1584 (2013). https://doi.org/10.1364/OL.38.001582
  18. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund Jr., "Metal-insulator phase transition in a $VO_{2}$ thin film observed with terahertz spectroscopy," Phys. Rev. B 74, 205103 (2006). https://doi.org/10.1103/physrevb.74.205103