DOI QR코드

DOI QR Code

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method

몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링

  • An, Haechan (SNU Laser Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Na, Jeongkyun (SNU Laser Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (SNU Laser Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
  • 안해찬 (서울대학교 전기.정보공학부, SNU 레이저 연구실) ;
  • 나정균 (서울대학교 전기.정보공학부, SNU 레이저 연구실) ;
  • 정윤찬 (서울대학교 전기.정보공학부, SNU 레이저 연구실)
  • Received : 2019.12.04
  • Accepted : 2020.02.21
  • Published : 2020.04.25

Abstract

We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

3차원 플래시 라이다 시스템(3D flash LIDAR system)에서의 대기 산란을 해석하기 위해 몬테 카를로 복사 전달(Monte Carlo radiative transfer, MCRT) 방법을 바탕으로 수정된 수치 해석 모델인 MCRT 행렬 방법을 논의한다. MCRT 방법을 바탕으로 라이다 신호의 복사 전달 함수를 행렬 형태로 구성하며, 이는 특성 응답에 해당한다. 근축 근사에 기반하여 본 특성 응답 행렬의 중첩 및 합성곱 연산을 활용함으로써 확장된 전반적인 플래시 라이다의 전산 모사 모델을 개발한다. MCRT 행렬 방법은 기존의 몬테 카를로 기반 방법들에서 과도하게 증가할 수 있는 개별 라이다 신호의 추적을 대폭 경감시킨다. 그 결과 본 방법은 다양한 산란 조건 및 라이다 시스템 구성 환경에서도 그 신호 응답을 빠르게 획득할 수 있는 특징을 지닌다. 본 논문에서는 MCRT 행렬 방법에 기반한 전산 모델을 이용하여 상이한 대기 환경 조건에서 동작하는 3차원 플래시 라이다 시스템을 그 산란 조건, 즉, 그 가시거리에 따른 산란 계수를 달리하며 모사하고, 플래시 라이다 신호의 신호대잡음비의 악화, 신호 오류, 시공간적 확산 및 시간 지연 등 시스템상에서의 산란 효과에 의해 나타나는 다양한 현상을 수치적으로 분석한다. MCRT 행렬 방법은 자율 주행을 위한 플래시 라이다 시스템을 포함해 다양한 라이다 시스템을 분석하는데 매우 효과적으로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. D. J. Natale, R. L. Tutwiler, M. S. Baran, and J. R. Durkin, "Using full motion 3D Flash LIDAR video for target detection, segmentation, and tracking," in Proc. Southwest Symposium on Image Analysis & Interpretation (SSIAI) (TX, USA, May 2010), pp. 21-24.
  2. A. Bulysheva, D. Pierrottetb, F. Amzajerdianc, G. Buschb, M. Vanekc, and R. Reissec, "Processing of 3-dimensional flash lidar terrain images generated from an airborne platform," Proc. SPIE 7329, 73290I (2009).
  3. J. Sun, J. Liu, and Q. Wang, "A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation," Optik 124, 204-208 (2013). https://doi.org/10.1016/j.ijleo.2011.11.073
  4. C. H. J ang, C. S. Kim, K. C. Jo, and M. Sunwoo, "Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications," Int. J. Automot. Technol. 18, 147-156 (2017). https://doi.org/10.1007/s12239-017-0015-7
  5. A. S. Concepts, "Peregrine 3D Flash LIDAR Vision System," (Advanced Scientific Concepts Inc.) http://www.advancedscientificconcepts.com/products/peregrine.html (2020.03.10).
  6. C.-I. Chen and R. Stettner, "Drogue tracking using 3D flash lidar for autonomous aerial refueling," Proc. SPIE 8037, 80370Q (2011).
  7. V. E. Roback, F. Amzajerdian, A. E. Bulyshev, P. F. Brewster, and B. W. Barnes, "3D flash lidar performance in flight testing on the Morpheus autonomous, rocketpropelled lander to a lunar-like hazard field," Proc. SPIE 9832, 983209 (2016).
  8. X.-B. Liu and L. Li, "Design of the optical system of flash lidar based on an APD array," Infrared. Laser Eng. 38, 893-896 (2009).
  9. G. Zhou, X. Zhou, J. Yang, Y. Tao, X. Nong, and O. Baysal, "Flash lidar sensor using fiber-coupled APDs," IEEE Sens. J. 15, 4758-4768 (2015). https://doi.org/10.1109/JSEN.2015.2425414
  10. C. Weitkamp, Lidar: range-resolved optical remote sensing of the atmosphere (Springer Series in Optical Sciences vol. 102), C. Weitkamp, ed. (Springer-Verlag, NY, USA, 2006).
  11. G. N. Plass and G. W. Kattawar, "Monte Carlo calculations of light scattering from clouds," Appl. Opt. 7, 415-419 (1968). https://doi.org/10.1364/AO.7.000415
  12. L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, and P. Schwendimann, "LIDAR multiple scattering from clouds," Appl. Phys. B 60, 355-362 (1995). https://doi.org/10.1007/BF01082271
  13. L. Wang and S. L. Jacques, "Monte Carlo modeling of light transport in multi-layered tissues in Standard C," (M. D. Anderson Cancer Center, University of Texas, Houston, Tex., 1992).
  14. H. An, Y. Kwon, and Y. Jeong, "Monte Carlo simulation of 3D flash LIDAR scheme for high-speed autonomous driving," in Proc. Novel Optical Materials and Applications (NO, USA, Jul. 2017), JTu4A.17.
  15. M. Han, J. Kim, H. An, and Y. Jeong, "3D flash LIDAR simulation for autonomous driving under various weather conditions," in Proc. Optics and Photonics for Sensing the Environment (SJ, USA, Jun. 2019), JW3A.7.
  16. I. I. Kim, B. McArthur, and E. J. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
  17. E. J. McCartney, Optics of the atmosphere: scattering by molecules and particles (John Wiley and Sons, NY, 1976), p. 421.
  18. J. M. Wallace and P. V. Hobbs, Atmospheric Science: An Introductory Survey (Academic Press, NY, 1977), p. 467.
  19. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). https://doi.org/10.1086/144246
  20. T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Ruefenacht, and D. Delpy, "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313 (2006). https://doi.org/10.1088/0031-9155/51/17/N04
  21. E. Poullain, F. Garestier, P. Bretel, and F. Levoy, "Modeling of ALS intensity behavior as a function of incidence angle for coastal zone surface study," in Proc. IEEE International Geoscience and Remote Sensing Symposium (Munich, Germany, Jul. 2012), 2849-2852.
  22. Velodyn LiDAR, "High Definition Real-Time 3D LiDAR," (Velodyne Lidar) https://velodynelidar.com/hdl-32e.html (2020.03.10.).
  23. Thorlabs, "Si Avalanche Photodetectors," (THORLABS) https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6686 (2020.03.10.).
  24. M. T. Cheng and Y. I. Tsai, "Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas," Sci. Total Environ. 263, 101-114 (2000). https://doi.org/10.1016/S0048-9697(00)00670-7
  25. Eugene Demaitre, "Sense Photonics says new solid state 3D sensor offers longest range for industrial use," (The Robot Report, October 23, 2019) https://www.therobotreport.com/sense-photonics-solid-state-3d-lidar-longest-range-industrialuse/ (2020.03.10.).