DOI QR코드

DOI QR Code

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin (School of Physics and Optoelectronic Engineering, Shandong University of Technology) ;
  • Man, Zhongsheng (School of Physics and Optoelectronic Engineering, Shandong University of Technology) ;
  • Tang, Shaolong (Laboratory of Solid State Microstructures, Nanjing University)
  • 투고 : 2019.11.22
  • 심사 : 2020.02.18
  • 발행 : 2020.04.25

초록

A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

키워드

참고문헌

  1. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cevollada, A. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, "Active magneto-plasmonics in hybrid metal-ferromagnet structures," Nat. Photonics 4, 107-111 (2010). https://doi.org/10.1038/nphoton.2009.265
  2. L. Halagacka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pistora, "Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect," Opt. Express 21, 21741-21755 (2013). https://doi.org/10.1364/OE.21.021741
  3. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. V. Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, "Plasmon-mediated magnetooptical transparency," Nat. Commun. 4, 2128 (2013). https://doi.org/10.1038/ncomms3128
  4. I. S. Maksymov, "Magneto-plasmonics and resonant interaction of light with dynamic magnetisation in metallic and all-magneto-dielectric nanostructures," Nanomaterials 5, 577-613 (2015). https://doi.org/10.3390/nano5020577
  5. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, "Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect," Phys. Rev. X 3, 041019 (2013).
  6. B. Sepulveda, J. B. Gonzalez-Diaz, A. Garcia-Martin, L. M. Lechuga, and G. Armelles, "Plasmon-induced magneto-optical activity in nanosized gold disks," Phys. Rev. Lett. 104, 147401 (2010). https://doi.org/10.1103/PhysRevLett.104.147401
  7. P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, "Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals," Nano Lett. 9, 1644-1650 (2009). https://doi.org/10.1021/nl900007k
  8. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, "Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems," Phys. Rev. Lett. 98, 077401 (2007). https://doi.org/10.1103/PhysRevLett.98.077401
  9. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, "Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation," Nat. Commun. 4, 1599 (2013). https://doi.org/10.1038/ncomms2609
  10. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, "Adjustable magneto-optical isolators with high transmittance and large Faraday rotation," J. Opt. Soc. Am. B 28, 2637-2642 (2011). https://doi.org/10.1364/JOSAB.28.002637
  11. K. Takahashi, H. Takagi, K. H. Shin, H. Uchida, P. B. Lim, and M. Inoue, "Enhancement of modulation rate of magneto-optical spatial light modulators with magnetophotonic crystals," J. Appl. Phys. 101, 09C523 (2007). https://doi.org/10.1063/1.2713044
  12. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, "Enhanced magneto-optical effects in magnetoplasmonic crystals," Nat. Nanotechnol. 6, 370-376 (2011). https://doi.org/10.1038/nnano.2011.54
  13. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C Kimerling, a nd C . A. R oss, " On-ch ip o ptical i solation in monolithically integrated non-reciprocal optical resonators," Nat. Photonics 5, 758-762 (2011). https://doi.org/10.1038/nphoton.2011.270
  14. K. Peterman, "External optical feedback phenomena in semiconductor lasers," IEEE. J. Sel. Top. Quantum Electron. 1, 480-489 (1995). https://doi.org/10.1109/2944.401232
  15. A. V. Baryshev, H. Uchida, and M. Inoue, "Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures," J. Opt. Soc. Am. B 30, 2371-2376 (2013). https://doi.org/10.1364/JOSAB.30.002371
  16. A. V. Baryshev and A. M. Merzlikin, "Tunable plasmonic thin magneto-optical wave plate," J. Opt. Soc. Am. B 33, 1399-1405 (2016). https://doi.org/10.1364/JOSAB.33.001399
  17. H. Uchida, Y. Mizutani, Y. Nakai, A. A. Fedyanin, and M. Inoue, "Garnet composite films with Au particles fabricated by repetitive formation for enhancement of Faraday effect," J. Phys. D: Appl. Phys. 44, 064014 (2011). https://doi.org/10.1088/0022-3727/44/6/064014
  18. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, "Magnetooptical effects in the metal-dielectric gratings," Opt. Commun. 278, 104-109 (2007). https://doi.org/10.1016/j.optcom.2007.05.064
  19. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, "Magnetooptical properties of perforated metallic films," J. Magn. Magn. Mater. 310, e843-e845 (2007). https://doi.org/10.1016/j.jmmm.2006.10.851
  20. H. Xu and B. S. Ham, "Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings," Opt. Express 16, 21375-21382 (2008). https://doi.org/10.1364/OE.16.021375
  21. C. Lei, L. Chen, Z. Tang, D. Li, Z. Cheng, S. Tang, and Y. Du, "Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays," Opt. Lett. 41, 729-732 (2016). https://doi.org/10.1364/OL.41.000729
  22. C. Lei, S. Wang, Z. Tang, D. Li, L. Chen, S. Tang, and Y. Du, "Extraordinary optical transmission and enhanced magneto-optical effects induced by hybrid waveguide-surface plasmon polariton mode in bilayer metallic grating," J. Phys. D: Appl. Phys. 50, 125002 (2017). https://doi.org/10.1088/0022-3727/50/12/125002
  23. C. Lei, Z. Tang, S. Wang, D. Li, L. Chen, S. Tang, and Y. Du, "Plasmon resonance enhanced optical transmission and magneto-optical Faraday effects in nanohole arrays blocked by metal antenna," Opt. Commun. 394, 41-49 (2017). https://doi.org/10.1016/j.optcom.2017.03.007
  24. D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in E. D. Palik, ed. (Academic press, Orlando, FA, USA, 1997), pp. 275-367.
  25. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, "Anomalous Faraday effect of a system with extraordinary optical transmittance," Opt. Express 15, 6612-6622 (2007). https://doi.org/10.1364/OE.15.006612
  26. R. Taubert, M. Hentschel, and H. Giessen, "Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis," J. Opt. Soc. Am. B 30, 3123-3134 (2013). https://doi.org/10.1364/JOSAB.30.003123
  27. D. Floess, M. Hentschel, T. Weiss, H. U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, "Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of $14^{\circ}$," Phys. Rev. X 7, 021048 (2017). https://doi.org/10.1103/physrevx.7.021048
  28. N. Sardana, V. Talalaev, F. Heyroth, G. Schmidt, C. Bohley, A. Sprafke, and J. Schilling, "Localized surface plasmon resonance in the IR regime," Opt. Express 24, 254-261 (2016). https://doi.org/10.1364/OE.24.000254
  29. A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, "Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field," Opt. Lett. 32, 2692-2694 (2007). https://doi.org/10.1364/OL.32.002692
  30. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, "Magneto-optical effects enhanced by surface plasmons in metallic multilayer films," Phys. Rev. Lett. 73, 3584 (1994). https://doi.org/10.1103/PhysRevLett.73.3584
  31. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). https://doi.org/10.1038/nmat2495