DOI QR코드

DOI QR Code

Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice

  • Received : 2019.07.22
  • Accepted : 2019.10.11
  • Published : 2020.01.28

Abstract

Lactobacillus sakei S1 strongly inhibits the expression of interleukin (IL)-6 and IL-1β in lipopolysaccharide-induced peritoneal macrophages by a mechanism for which lactic acid bacteria from kimchi that inhibit tumor necrosis factor-alpha (TNF-α) were isolated. Therefore, we further evaluated the protective effect of this strain on the colitis mouse model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS significantly elevated myeloperoxidase (MPO) expression, macroscopic scores, and colon shortening. Oral L. sakei S1 administration resulted in reduction of TNBS-induced loss in body weight, colon shortening, MPO activity, expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB). L. sakei S1 inhibited the expression of inflammatory cytokines IL-1β, IL-6 and TNF-α, induced by TNBS, but enhanced IL-10 expression. L. sakei S1 showed resistance to artificial digestive juices and adherence to intestinal epithelial Caco-2 cells. Thus, L. sakei S1 may inhibit the NF-κB pathway and be used in functional food to treat colitis.

Keywords

References

  1. Neuman MG, Nanau RM. 2012. Inflammatory bowel disease: role of diet, microbiota, life style. Trans. Res. 160: 29-44. https://doi.org/10.1016/j.trsl.2011.09.001
  2. Shanahan F. 2002. Gut flora in gastrointestinal disease. Eur. J. Surg. Suppl. 587: 47-52.
  3. Jang SE, Han MJ, Kim SY, Kim DH. 2014. Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages. Int. Immunopharmacol. 21: 186-192. https://doi.org/10.1016/j.intimp.2014.04.021
  4. Chandran P, Satthaporn S, Robins A, Eremin O. 2003. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (I). Surgeon 1: 63-75. https://doi.org/10.1016/s1479-666x(03)80118-x
  5. Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787. https://doi.org/10.1038/35021228
  6. Min SW, Ryu SN, Kim DH. 2010. Anti-inflammatory effects of black rice, cyanidin-3-O-${\beta}$-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 10: 959-966. https://doi.org/10.1016/j.intimp.2010.05.009
  7. Hutchison S, Choo-Kang BS, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, et al. 2008. Tumour necrosis factoralpha blockade suppresses murine allergic airways inflammation. Clin. Exp. Immunol. 151: 114-122 https://doi.org/10.1111/j.1365-2249.2007.03509.x
  8. Lee IA, Park YJ, Joh EH, Kim DH. 2011. Soyasaponin Ab ameliorates colitis by inhibiting the binding of lipopolysaccharide (LPS) to Toll-like receptor (TLR) 4 on macrophages. J. Agric. Food Chem. 59: 13165-13172. https://doi.org/10.1021/jf2033818
  9. Collins MP, Gibson GR. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: 1052S-1057S. https://doi.org/10.1093/ajcn/69.5.1052s
  10. Aggarwal J, Swami G, Kumar M. 2013. Probiotics and their effects on metabolic diseases: an update. J. Clin. Diagn. Res. 7: 173-177. https://doi.org/10.7860/JCDR/2012/5004.2701
  11. Romeo J, Nova E, Warnberg J, Gomez-Martinez S, Diaz Ligia LE, Marcos A. 2010. Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutr. Hosp. 25: 341-349.
  12. Peran L, Sierra S, Comalada M, Lara-Villoslada F, Bailon E, Nieto A, et al. (2007). A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br. J. Nutr. 97: 96-103. https://doi.org/10.1017/S0007114507257770
  13. Okada Y, Tsuzuki Y, Takeshi T, Furuhashi H, Higashiyama M, Watanabe C, et al. 2018. Novel probiotics isolated from a Japanese traditional fermented food, Funazushi, attenuates DSS-induced colitis by increasing the induction of high integrin ${\alpha}v/{\beta}8$-expressing dendritic cells. J. Gastroenterol. 53: 407-418. https://doi.org/10.1007/s00535-017-1362-x
  14. Bellavia M, Rappa F, Lo Bello M, Brecchia G, Tomasello G, Leone A, et al. 2014. Lactobacillus casei and Bifidobacterium lactis supplementation reduces tissue damage of intestinal mucosa and liver after 2,4,6-trinitrobenzenesulfonic acid treatment in mice. J. Biol. Regul. Homeost. Agents. 28: 251-261.
  15. Jang SE, Jeong JJ, Kim JK, Han MJ, Kim DH. 2018. Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci. Rep. 8: 7500. https://doi.org/10.1038/s41598-018-25775-0
  16. Jang SE, Hyun YJ, Oh YJ, Choi KB, Kim T, Yeo IH, et al. 2011. Adhesion activity of Lactobacillus plantarum PM 008 isolated from Kimchi on the intestine of mice. J. Bacteriol. Virol. 41: 83-90. https://doi.org/10.4167/jbv.2011.41.2.83
  17. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94: 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  18. Lim SM, Jeong JJ, Jang SE, Han MJ, Kim DH. 2016. A mixture of the probiotic strains Bifidobacterium longum CH57 and Lactobacillus brevis CH23 ameliorates colitis in mice by inhibiting macrophage activation and restoring the Th17/Treg balance. J. Funct. Foods. 27: 295-309. https://doi.org/10.1016/j.jff.2016.09.011
  19. Kwon KH, Murakami A, Hayashi R, Ohigashi H. 2005. Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis. Biochem. Biophys. Res. Commun. 337: 647-654. https://doi.org/10.1016/j.bbrc.2005.09.107
  20. Ljungh A, Wadstrom T. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intestinal Microbiol. 7: 73-90.
  21. Lee KW, Park JY, Sa HD, Jeong JH, Jin DE, Heo HJ, et al. 2014. Probiotic properties of Pediococcus strains isolated from Jeotgals, salted and fermented Korean sea-food. Ananerobe 28: 199-206. https://doi.org/10.1016/j.anaerobe.2014.06.013
  22. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  23. Fiorucci S, Mencarelli A, Palazzetti B, Sprague AG, Distrutti E, Morelli A, et al. 2002. Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity 17: 769-780. https://doi.org/10.1016/S1074-7613(02)00476-4
  24. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Buschenfelde, KH, et al. 1997. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur. J. Immunol. 27: 1743-1750. https://doi.org/10.1002/eji.1830270722
  25. Fiorucci S, Mencarelli A, Palazzetti B, Distrutti E, Vergnolle N, Hollenberg MD, et al. 2001. Proteinase-activated receptor (PAR)-2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proc. Natl. Acad. Sci. USA 98: 13936-13941. https://doi.org/10.1073/pnas.241377298
  26. Iyer SS, Cheng G. 2012. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23-63. https://doi.org/10.1615/CritRevImmunol.v32.i1.30
  27. Barens PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336: 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  28. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. 1995. Transcriptional regulation of endothelial cell adhesion molecules: $NF-{\kappa}B$ and cytokine inducible enhancers. FASEB. J. 9: 899-909. https://doi.org/10.1096/fasebj.9.10.7542214
  29. Yu YR, Rodriguez JR. 2017. Clinical presentation of Crohn's, ulcerative colitis, and indeterminate colitis: symptoms, extraintestinal manifestations, and disease phenotypes. Semin. Pediatr. Surg. 26: 349-355. https://doi.org/10.1053/j.sempedsurg.2017.10.003
  30. Chami B, Martin NJJ, Dennis JM, Witting PK. 2018. Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease. Arch. Biochem. Biophys. 645: 61-71. https://doi.org/10.1016/j.abb.2018.03.012
  31. Jang SE, Hyam SR, Jeong JJ, Han MJ, Kim DH. 2013. Penta-O-galloyl-${\beta}$-D-glucose ameliorates inflammation by inhibiting MyD88/$NF-{\kappa}B$ and MyD88/MAPK signalling pathways. Br. J. Pharmacol. 170: 1078-1091. https://doi.org/10.1111/bph.12333

Cited by

  1. Lactobacillus sakei suppresses collagen-induced arthritis and modulates the differentiation of T helper 17 cells and regulatory B cells vol.18, pp.1, 2020, https://doi.org/10.1186/s12967-020-02477-8
  2. Regulation of Intestinal Inflammation by Dietary Fats vol.11, 2020, https://doi.org/10.3389/fimmu.2020.604989