DOI QR코드

DOI QR Code

오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System

  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김탁겸 (가톨릭관동대학교 대학원 에너지환경융합학과) ;
  • 신범식 (가톨릭관동대학교) ;
  • 이광호 (가톨릭관동대학교 토목공학과)
  • Kim, Do-Sam (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Kim, Tag-Gyeom (Dept. of Energy and Environmental Eng., Graduate School, Catholic Kwandong University) ;
  • Shin, Bum-Shick (Waterfront and Coastal Research Center, Catholic Kwandong University) ;
  • Lee, Kwang-Ho (Dept. of Civil Engineering, Catholic Kwandong University)
  • 투고 : 2019.12.11
  • 심사 : 2020.01.28
  • 발행 : 2020.02.28

초록

자유수면을 포함하는 파동장과 같이 단상의 경계가 시간발전에 따라 지속적으로 변화하는 경우나 액상과 기상이 혼합되는 문제에 있어서는 다상유동(multiphase flow) 문제를 적용하는 예가 증가하고 있다. 특히, 파동장과 같은 자유수면의 문제를 취급하는데 있어서는 혼합되지 않는 액상과 기상의 비압축성 뉴턴유체를 고려한 혼상류 모델이 적용되는 경우가 많다. 일반적으로 혼상류 모델은 각상의 경계면에 대한 시간기반 거동추적이 필수적이며, 궁극적으로는 계산의 정도를 좌우한다. 본 연구는 다양한 CFD 수치해석코드에 적용되고 있는 대표적인 VOF-type의 경계면 추적기법들의 이류성능을 평가하였다. 특히, 기존의 전통적인 VOF-type의 경계면 추적기법 및 이류계산에서 발생하는 수치확산을 최소화하기 위해 수치유속(numerical flux)을 제어하는 FCT 법의 효용성을 평가하고, 더불어 CIP 법을 활용한 자유수면 추적성능의 가능성을 고찰하였다. 그 결과, 본 연구에서 적용한 제한된 조건하에서는 수치확산 방지를 위해 수치확산방지 유속을 도입한 FCT-VOF 법이 가장 높은 경계면의 추적성능을 보였다. 본 연구에서 도출되는 결과는 다양한 수치해석코드에 적용되는 자유수면의 추적기법을 선택함에 있어서 중요한 기초자료로 활용될 것으로 기대된다.

The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

키워드

참고문헌

  1. Boris, J.P. and Book, D.L. (1973). Flux-Corrected Transport. 1. SHASTA, A Fluid Transport Algorithm That Works. Journal of Computational Physics, 11, 38-69. https://doi.org/10.1016/0021-9991(73)90147-2
  2. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  3. Higuera, P., Lara, J.L. and Losada, I..J. (2013). Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM(R). Coastal Engineering, 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  4. Jabbari, M., Bulatova, R., Hattel, J. and Bahl, C.R.H. (2014). An evaluation of interface capturing methods in a VOF based model for multiphase flow of a non-Newtonian ceramic in tape casting. Applied Mathematical Modelling, 38(13), 3222-3232. https://doi.org/10.1016/j.apm.2013.11.046
  5. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the open-source CFD library: Open-Foam(R). International Journal for Numerical Methods in Fluids, 70(9), 1073-1088. https://doi.org/10.1002/fld.2726
  6. Johnson, W.E. (1970). Development and application of computer programs related to hypervelocity impact. Systems Science and Software report 3SR-353.
  7. Keshavarzi, G., Yeoh, G.H. and Barber, T. (2013). Comparison of the VOF and CLSVOF methods in interface capturing of a rising bubble. Journal of Computational Multiphase Flows, 5(1), 43-56. https://doi.org/10.1260/1757-482X.5.1.43
  8. Kim, D.S., Lee, K.H. and Kim, J.S. (2002). Analysis of wave transformation and velocity fields including wave breaking due to the permeable submerged breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 14(2), 171-181 (in Korean).
  9. Lee, K.H., Kim, K.H. and Kim, D.S. (2012). Interface capturing for immiscible two-phase fluid flows by THINC method. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 277-286 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.4.277
  10. Murray, R. (1997). Volume-Tracking Method for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671-691. https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  11. Osher, S. and Sethian, J.A. (1988). Fronts propagation with curvature dependent speed: Algorithms Based on Hamilton Jacobi Formulations. Journal of Computational Physics, 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  12. Takewaki, H., Nishiguchi, A. and Yabe, T. (1985). The cubic-interpolated pseudo-particle (CIP) method for solving hyperbolic-type equations. Journal of Computational Physics, 61, 261-268. https://doi.org/10.1016/0021-9991(85)90085-3
  13. Takewaki, H. and Yabe, T. (1987). Cubic-interpolated pseudo particle (CIP) method - Application to nonlinear or multi-dimensional problems. Journal of Computational Physics, 70, 355-372. https://doi.org/10.1016/0021-9991(87)90187-2
  14. Torrey, M.D., Cloutman, L.D., Mjolsness, R.C. and Hirt, C.W. (1985). NASA-VOF 2D: A computer program for incompressible flows with free surfaces. Rep. No. LA-100612-MS, Los Alamos National Laboratory.
  15. Torrey, M.D., Mjolsness, R.C. and Stein, L.R. (1987). NASA-VOF 3D: A three-dimensional computer program for incompressible flows with free surfaces. Rep. No. LA-11009-MS, Los Alamos National Laboratory.
  16. Welch, J.E., Harlow, F.H., Shannon, J.P. and Daly, B.J. (1966). The MAC Method: A computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Rep. No. LA-3425, Los Alamos National Laboratory.
  17. Wu, H. and Yang, S. (1989). A new class of accurate high resolution schemes for conservation laws in two dimensions. IMPACT of Comput. Sci. and Eng., 1, 217-259. https://doi.org/10.1016/0899-8248(89)90011-6
  18. Xiao, F., Honma, Y. and Kono, T. (2005). A simple algebraric interface capturing scheme using hyperbolic tangent function. Int. J. Numerical Methods in Fluids, 48, 1023-1040. https://doi.org/10.1002/fld.975
  19. Xie, B., Jin, P. and Xiao, F. (2017). An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 89, 375-398. https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.016
  20. Yabe, T. and Aoki, T. (1991). A universal solver for hyperbolic-equations by cubic-polynomial interpolation. I. One-dimensional solver. Computational Physics Communications, 66. 219-232. https://doi.org/10.1016/0010-4655(91)90071-R
  21. Yabe, T., Mizoe, H., Takizawa, K., Moriki, H., Im, H. and Ogata, Y. (2004). Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme. Journal of Computational Physics, 194, 57-77. https://doi.org/10.1016/j.jcp.2003.08.019
  22. Yabe, T., Xiao, F. and Utsumi, T. (2001). Constrained interpolation profile method for multiphase analysis. Journal of Computational Physics, 169, 556-593. https://doi.org/10.1006/jcph.2000.6625
  23. Zalesak, S. (1979). Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31, 335-362. https://doi.org/10.1016/0021-9991(79)90051-2