DOI QR코드

DOI QR Code

RNAi-Mediated Gene Silencing of Trcot1 Induces a Hyperbranching Phenotype in Trichoderma reesei

  • Gao, Fei (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Li, Mengzhu (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Liu, Weiquan (College of Biological Sciences, China Agricultural University) ;
  • Bai, Yingguo (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Tao, Tu (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Yuan (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Jie (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Luo, Huiying (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yao, Bin (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Huang, Huoqing (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Su, Xiaoyun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
  • 투고 : 2019.09.26
  • 심사 : 2019.11.12
  • 발행 : 2020.02.28

초록

Trichoderma reesei is the major filamentous fungus used to produce cellulase and there is huge interest in promoting its ability to produce higher titers of cellulase. Among the many factors affecting cellulase production in T. reesei, the mycelial phenotype is important but seldom studied. Herein, a close homolog of the Neurospora crassa COT1 kinase was discovered in T. reesei and designated TrCOT1, which is of 83.3% amino acid sequence identity. Functional disruption of Trcot1 in T. reesei by RNAi-mediated gene silencing resulted in retarded sporulation on potato dextrose agar and dwarfed colonies on minimal medium agar plates containing glucose, xylan, lactose, xylose, or glycerol as the sole carbon source. The representative mutant strain, SUS2/Trcot1i, also displayed reduced mycelia accumulation but hyperbranching in the MM glucose liquid medium, with hyphal growth unit length values decreased to 73.0 ㎛/tip compared to 239.8 ㎛/tip for the parent strain SUS2. The hyperbranching phenotype led to slightly but significantly increased cellulase secretion from 24 to 72 h in a batch culture. However, the cellulase production per unit of mycelial biomass was much more profoundly improved from 24 to 96 h.

키워드

참고문헌

  1. Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54: 559-568. https://doi.org/10.1111/j.1365-313X.2008.03463.x
  2. Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate J HD. 2010. C ellodex rtin t ransport i n yeast f or improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
  3. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  4. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49: 3305-3316. https://doi.org/10.1021/bi100009p
  5. Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438-443. https://doi.org/10.1016/S0958-1669(03)00099-5
  6. Zhang JJ, Zhang GX, Wang W, Wei DZ. 2018. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microb. Cell Fact. 17(1): 75. https://doi.org/10.1186/s12934-018-0926-7
  7. Zhong YH, Yu HN, Wang XL, Lu Y, Wang TH. 2011. Towards a novel efficient T-DNA-based mutagenesis and screening system using green fluorescent protein as a vital reporter in the industrially important fungus Trichoderma reesei. Mol. Biol. Rep. 38: 4145-4151. https://doi.org/10.1007/s11033-010-0534-z
  8. Durand H, Clanet M, Tiraby G. 1988. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb. Technol. 10: 341-346. https://doi.org/10.1016/0141-0229(88)90012-9
  9. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988-31997. https://doi.org/10.1074/jbc.M304750200
  10. Rassinger A, Gacek-Matthews A, Strauss J, Mach RL, Mach-Aigner AR. 2018. Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator. Fungal Biol. Biotechnol. 5: 15. https://doi.org/10.1186/s40694-018-0059-0
  11. Zhang F, Zhao X, Bai F. 2018. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 247: 676-683. https://doi.org/10.1016/j.biortech.2017.09.126
  12. de Paula RG, Antonieto ACC, Carraro CB, Lopes DCB, Persinoti GF, Peres NTA, et al. 2018. The duality of the MAPK signaling pathway in the control of metabolic processes and cellulase production in Trichoderma reesei. Sci. Rep. 8(1): 14931. https://doi.org/10.1038/s41598-018-33383-1
  13. Chen YM, Shen YL, Wang W, Wei DZ. 2018. $Mn^{2+}$ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. Biotechnol. Biofuels 11: 54. https://doi.org/10.1186/s13068-018-1055-6
  14. Riquelme M, Sanchez-Leon E. 2014. The Spitzenkorper: a choreographer of fungal growth and morphogenesis. Curr. Opin. Microbiol. 20: 27-33. https://doi.org/10.1016/j.mib.2014.04.003
  15. Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S, Beltran-Aguilar A, et al. 2014. The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth. Mol. Biol. Cell. 25: 1312-1326. https://doi.org/10.1091/mbc.E13-06-0299
  16. Hayakawa Y, Ishikawa E, Shoji J, Nakano H, Kitamoto K. 2011. Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol. Microbiol. 81: 40-55. https://doi.org/10.1111/j.1365-2958.2011.07700.x
  17. He RL, Li C, Ma LJ, Zhang DY, Chen SL. 2016. Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15. 3 Biotech. 6(2): 214 .
  18. Jackson-Hayes L, Hill TW, Loprete DM, Fay LM, Gordon BS, Nkashama SA, et al. 2008. Two GDP-mannose transporters contribute to hyphal form and cell wall integrity in Aspergillus nidulans. Microbiology 154: 2037-2047. https://doi.org/10.1099/mic.0.2008/017483-0
  19. Dreyer J, Eichhorn H, Friedlin E, Kurnsteiner H, Kuck U. 2007. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl. Environ. Microbiol. 73: 3412-3422. https://doi.org/10.1128/AEM.00129-07
  20. Gatherar IM, Pollerman S, Dunn-Coleman N, Turner G. 2004. Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans. Fungal Genet. Biol. 41: 463-471. https://doi.org/10.1016/j.fgb.2003.12.004
  21. Lindsey R, Cowden S, Hernandez-Rodriguez Y, Momany M. 2010. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot. Cell 9: 155-163. https://doi.org/10.1128/EC.00269-09
  22. Maerz S, Ziv C, Vogt N, Helmstaedt K, Cohen N, Gorovits R, et al. 2008. The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179: 1313-1325. https://doi.org/10.1534/genetics.108.089425
  23. Li S, Du L, Yuen G, Harris SD. 2006. Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell 17: 1218-1227. https://doi.org/10.1091/mbc.E05-06-0533
  24. te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, et al. 2005. Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl. Microbiol. Biotechnol. 69: 44-50. https://doi.org/10.1007/s00253-005-1968-4
  25. Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, et al. 2018. A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnol. Biofuels 11: 261. https://doi.org/10.1186/s13068-018-1264-z
  26. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345. https://doi.org/10.1038/nmeth.1318
  27. Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164. https://doi.org/10.1016/0378-1119(87)90110-7
  28. Jayaraman J, Cotman C, Mahler HR, Sharp CW. 1966. Biochemical correlates of respiratory deficiency. VII. Glucose repression. Arch. Biochem. Biophys. 116: 224-251. https://doi.org/10.1016/0003-9861(66)90029-4
  29. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  30. Hanks SK, Quinn AM, Hunter T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52. https://doi.org/10.1126/science.3291115
  31. Taylor SS. 1989. cAMP-dependent protein kinase. Model for an enzyme family. J. Biol. Chem. 264: 8443-8446. https://doi.org/10.1016/S0021-9258(18)81805-1
  32. Li L, Chang SS, Liu Y. 2010. RNA interference pathways in filamentous fungi. Cell. Mol. Life Sci. 67: 3849-3863. https://doi.org/10.1007/s00018-010-0471-y
  33. Fiedler MRM, Cairns TC, Koch O, Kubisch C, Meyer V. 2018. Conditional expression of the small GTPase ArfA impacts secretion, morphology, growth, and actin ring position in Aspergillus niger. Front. Microbiol. 9: 878. https://doi.org/10.3389/fmicb.2018.00878
  34. Harris SD. 2006. Cell polarity in filamentous fungi: shaping the mold. Int. Rev. Cytol. 251: 41-77. https://doi.org/10.1016/S0074-7696(06)51002-2
  35. Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. 2012. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc. Natl. Acad. Sci. USA 109: 7397-7402. https://doi.org/10.1073/pnas.1200785109
  36. Lin L, Sun Z, Li J, Chen Y, Liu Q, Sun W, et al. 2018. Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microb. Cell Fact. 17(1): 96. https://doi.org/10.1186/s12934-018-0944-5
  37. Yarden O, Plamann M, Ebbole DJ, Yanofsky C. 1992. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11: 2159-2166. https://doi.org/10.1002/j.1460-2075.1992.tb05275.x
  38. Seiler S, Vogt N, Ziv C, Gorovits R, Yarden O. 2006. The STE20/germinal center kinase POD6 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Mol. Biol. Cell 17: 4080-4092. https://doi.org/10.1091/mbc.E06-01-0072
  39. Muller C, McIntyre M, Hansen K, Nielsen J. 2002. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl. Environ. Microbiol. 68: 1827-1836. https://doi.org/10.1128/AEM.68.4.1827-1836.2002

피인용 문헌

  1. Reduced viscosity mutants of Trichoderma reesei with improved industrial fermentation characteristics vol.48, pp.1, 2021, https://doi.org/10.1093/jimb/kuab014