DOI QR코드

DOI QR Code

저토피 철도터널구간의 안전 및 시공성을 고려한 개선된 강관다단 그라우팅 공법 적용성 분석

Applicability Analysis of an Improved Multistep Steel Pipe Grouting Method in Shallow Depth Railway Tunnels in Considering Safety and Constructability

  • 김낙석 (경기대학교 토목공학과) ;
  • 최기성 (경기대학교 소방.도시방재학과) ;
  • 김석현 (경기대학교 소방.도시방재학과)
  • 투고 : 2019.08.05
  • 심사 : 2019.12.10
  • 발행 : 2020.02.01

초록

저토피 철도터널구간의 안전 및 시공성을 고려한 굴착보조공법으로서 강관다단 그라우팅 기술이 선정되었다. 특히, 공사 중 과도한 주입압에 의한 지반파괴로 피해가 발생할 우려가 있어 기존 강관다단 그라우팅 공법을 새롭게 개선하여 적용하였다. 본 연구는 00공단에서 발주한 000노반시설 기타공사 구간 중 00안 고속도로 및 00휴게소(하행) 진입로 하부로 통과하는 토피고 11.3~12.1 m 두께의 저토피 철도터널 현장에서 수행하였다. 개선된 강관다단 그라우팅 공법은 새로운 한계주수시험법을 이용한 시공 전 시공조건 평가 기술, 절리의 간격평가, 적합한 주입압력 평가, 최적의 작업완료시간 평가, 주입유형분석에 의한 주입효과평가 기술 등이다. 개선된 강관다단 그라우팅 공법의 적용으로 터널굴착공사 중상부 저토피 구간의 도로를 원활하게 운영할 수 있는 근거를 마련할 수 있었다. 또한, 향후 저토피 구간의 터널강관다단 그라우팅 공사뿐만 아니라 다양한 터널(도로, 지하철, 공동구 등) 강관다단 그라우팅 공사에 적용될 수 있는 가능성을 확인하였다.

The newly improved multistep steel pipe grouting method was applied to an existing steel pipe-reinforced grouting method. It was applied in order to prevent a damage caused by ground failure from excessive grouting pressure in a tunnel construction. The tunnel goes under a highway and a ramp connected to a rest area on OO highway with 11.3~12.1 m depth cover and is a part of roadbed facility construction section ordered by OO public corporation. The improved grouting method provides pre-construction work condition assessment technique through new water injection limit test and grouting effect assessment technique by grouting type assessment. It also includes assessments on interval of joints, appropriate grouting pressure, and optimal operation time to be applied to current operations. Application of the grouting method allowed the smooth road management in shallow-depth grouting construction area located upper part of tunnel excavation. Moreover, the possibility of the application of the method not only to shallow-depth grouting construction but also to various steel pipe-reinforced grouting constructions was confirmed.

키워드

참고문헌

  1. Axelsson, M. (2006). Strength criteria on grouting agents for hard rock - Laboratory studies performed on gelling liquid and cementitious grout, Licentiate Thesis, University of technology, Chalmers, Goteborg, Sweden.
  2. Eloranta, E. (2007). Geophysical field theory, Report STUK-A198, STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland (Abstract in English).
  3. Houlsby, A. (1990). Construction and design of cement grouting, John Wiley and Sons, New York, USA.
  4. Japan Grouting Association (2012). The guide book of durability grouting method, pp. 27-28 (in Japanese).
  5. Kim, J. C. (2012). The grouting management technology using AGS (Automatic Grouting System), Construction New Technology No. 644, pp. 27-28 (in Korean).
  6. Kim, J. C. and Yoo, B. S. (2018). "A development of tunnel grouting programme using a research of grouting construction process." Journal of Korean Society of Disaster and Security, Vol. 11, No. 1, pp. 23-30 (in Korean). https://doi.org/10.21729/KSDS.2018.11.1.23
  7. Korea Rail Network Authority (2018a). The mix ratio experiment report of sealing & grouting material of steel pipe multistep grouting, pp. 1-4 (in Korean).
  8. Korea Rail Network Authority (2018b). The specification of small steel pipe multistep grouting construction, pp. 1-5 (in Korean).
  9. Minstry, J. F. (1988). Important aspects of river valley projects, Mahajan Book Distributors, Vol. 2, Amdavad, Gujarat, India.
  10. Tolppanen, P. and Syrjanen, P. (2003). Hard rock tunnel grouting practice in Finland, Sweden, and Norway, Publications no:1, Report 8:2003, Finnish Tunnelling Association, Finland.