DOI QR코드

DOI QR Code

Comparative study of torsional wave profiles through stratified media with fluted boundaries

  • Maity, Manisha (Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines) Dhanbad) ;
  • Kundu, Santimoy (Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines) Dhanbad) ;
  • Kumari, Alka (Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines) Dhanbad) ;
  • Gupta, Shishir (Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines) Dhanbad)
  • 투고 : 2019.03.11
  • 심사 : 2019.11.12
  • 발행 : 2020.04.10

초록

A mathematical analysis has been carried out for understanding the traversal attributes of torsional waves in a Voigt-type viscoelastic porous layer bounded with corrugated surfaces resting over a heterogeneous transversely isotropic gravitating semi-infinite medium. Both the media are assumed to be under the effect of initial stresses acting along horizontal directions. In the presumed geometry, continuous and periodic type of corrugation has been considered. The condensed form of dispersion relation has been obtained analytically with the aid of the Whittaker's function and suitable boundary conditions. The influence of viscoelasticity, porosity, initial stresses, heterogeneity, gravity, undulation and position parameters on the phase and damped velocities has been illustrated graphically. In addition, relative examination investigating the impact of corrugated and planar bounded surfaces on the dispersion and damping characteristics is one of the important highlights of this study.

키워드

과제정보

The authors wish to convey their sincere gratitude to IIT (ISM), Dhanbad, Jharkhand-826004, India, for providing financial support and necessary facilities to Ms. Manisha Maity (IIT(ISM)-JRF) for research work.

참고문헌

  1. Abo-Dahab, S.M., Abd-Alla, A.M. and Khan, A. (2016), "Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 58(1), 181-197. https://doi.org/10.12989/sem.2016.58.1.181.
  2. Ahmed, S. M. (1999), "Influence of gravity on the propagation of waves in granular medium", Appl. Math. Comput., 101(2-3), 269-280. https://doi.org/10.1016/S0096-3003(98)10006-1.
  3. Alam, P., Kundu, S. and Gupta, S. (2017), "Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media", Appl.Math. Mech., 38(9), 1313-1328. https://doi.org/10.1007/s10483-017-2239-8.
  4. Alam, P., Kundu, S. and Gupta, S. (2018), "Dispersion and Attenuation of Love-Type Waves Due to a Point Source in Magneto-Viscoelastic Layer", J. Mech., 34(6), 801-816. https://doi.org/10.1017/jmech.2017.110.
  5. Alam, P., Kundu, S. and Gupta, S. (2018), "Dispersion study of SH-wave propagation in an irregular magneto-elastic anisotropic crustal layer over an irregular heterogeneous half-space", J. King Saud U Sci., 30(3), 301-310. https://doi.org/10.1016/j.jksus.2016.11.007.
  6. Alam, P., Kundu, S. and Gupta, S. (2018), "Effect of magneto-elasticity, hydrostatic stress and gravity on Rayleigh waves in a hydrostatic stressed magneto-elastic crystalline medium over a gravitating half-space with sliding contact", Mech. Res. Communications, 89, 11-17. https://doi.org/10.1016/j.mechrescom.2018.02.001.
  7. Alam, P., Kundu, S. and Gupta, S. (2018), "Love-type wave propagation in a hydrostatic stressed magneto-elastic transversely isotropic strip over an inhomogeneous substrate caused by a disturbance point source", J. Intelligent Mater. Syst. Struct., 29(11), 2508-2521. https://doi.org/10.1177/1045389X18770877.
  8. Alam, P., Kundu, S., Gupta, S. and Saha, A. (2018), "Study of torsional wave in a poroelastic medium sandwiched between a layer and a half-space of heterogeneous dry sandy media", Waves Random Complex Media, 28(1), 182-201. https://doi.org/10.1080/17455030.2017.1335915.
  9. Asano, S. (1966), "Reflection and refraction of elastic waves at a corrugated interface", Bullet. Seismological Soc. America, 56(1), 201-221. https://doi.org/10.1785/BSSA0560010201
  10. Biot, M. A. (1956a), "Theory of deformation of a porous viscoelastic anisotropic solid", J. Appl. Phys, 27(5), 459-467. https://doi.org/10.1063/1.1722402.
  11. Biot, M. A. (1956b), "Theory of elastic waves in a fluid-saturated porous solid: I. Low frequency range", J. Acoustical Sco. America, 28(1), 168-178. https://doi.org/10.1121/1.1908239.
  12. Biot, M. A. (1956c), "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range", J. Acoustical Sco. America, 28(2), 179-191. https://doi.org/10.1121/1.1908241.
  13. Biot, M. A. (1965), Mechanics of Incremental Deformations, John Wiley and Sons, New York.
  14. Carcione, J. M. (1993), "Seismic modeling in viscoelastic media", Geophysics, 58(1), 110-120. https://doi.org/10.1190/1.1443340.
  15. Chattaraj, R. and Samal, S. K. (2013), "Love waves in the fiber-reinforced layer over a gravitating porous half-space", Acta Geophysica, 61(5), 1170-1183. https://doi.org/10.2478/s11600-012-0100-2.
  16. De, S. N. and Sen-Gupta, P. R. (1974), "Influence of gravity on wave propagation in an elastic layer", J. Acoustical Sco. America, 55(5), 919-921. https://doi.org/10.1121/1.1914662.
  17. Elmorabie, K. M. and Yahya, R. R. (2017), "Diffraction of elastic waves from object in layer with slightly corrugated surface", Math. Mech. Solids, 1081286517713341.
  18. Gupta, S. and Ahmed, M. (2017), "Influence of pre-stress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi-infinite substrate", European Phys J Plus, 132(1), 8. https://doi.org/10.1140/epjp/i2017-11282-6.
  19. Gupta, S., Ahmed, M. and Pramanik, A. (2017), "Shear waves in elastic medium with void pores welded between vertically inhomogeneous and anisotropic magnetoelastic semi-infinite media", Acta Geophysica, 65(1), 139-149. https://doi.org/10.1007/s11600-017-0012-2.
  20. Gupta, S., Pati, P., Mandi, A. and Kundu, S. (2018), "Scattering of torsional surface waves in a three-layered model structure", Struct. Eng. Mech., 68(4), 443-457. https://doi.org/10.12989/sem.2018.68.4.443.
  21. Kakar, R. and Kakar, S. (2016), "Dispersion of shear wave in a pre-stressed heterogeneous orthotropic layer over a pre-stressed anisotropic porous half-space with self-weight", Struct. Eng. Mech., 59(6), 951-972. https://doi.org/10.12989/sem.2016.59.6.951.
  22. Kumar, R., Singh, K. and Pathania, D.S. (2019), "Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space", Struct. Eng. Mech., 69(2), 121-129. https://doi.org/10.12989/sem.2019.69.2.121.
  23. Kundu, S., Alam, P., Gupta, S. and Pandit, D. K. (2017), "Impacts on the propagation of SH-waves in a heterogeneous viscoelastic layer sandwiched between an anisotropic porous layer and an initially stressed isotropic half space", J. Mech., 33(1), 13-22. https://doi.org/10.1017/jmech.2016.43.
  24. Love, A. E. H.(1920), Mathematical Theory of Elasticity, Cambridge University Press, Cambridge.
  25. Maity, M., Kundu, S., Pandit, D.K. and Gupta, S. (2018), "Characteristics of torsional wave profiles in a viscous fiber-reinforced layer resting over a sandy half-space under gravity", J. Geomech., 18(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0001207.
  26. Ozturk, A. and Akbarov, S. D. (2009), "Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium", Appl. Math. Model., 33(9), 3636-3649. https://doi.org/10.1016/j.apm.2008.12.003.
  27. Prosser, W. H. and Green Jr, R. E. (1990), "Characterization of the non-linear elastic properties of graphite/epoxy composites using ultrasound", J. Reinforced Plastics Compos., 9(2), 162-173. https://doi.org/10.1177%2F073168449000900206. https://doi.org/10.1177/073168449000900206
  28. Romenski, E. I., Lys, E. V., Cheverda, V. A. and Epov, M. I. (2014), "Wave propagation in pre-stressed elastic media", Seismic Technol., 11(4), 1-10.
  29. Selim, M. M. (2007), "Propagation of torsional surface waves in heterogeneous half-space with irregular free surface", Appl. Math. Sci., 1(29), 1429-1437.
  30. Sharma, M.D. and Gogna, M.L. (1991), "Seismic wave propagation in a viscoelastic porous solid saturated by viscous liquid", Pure Appl. Geophys., 135(3), 383-400. https://doi.org/10.1007/BF00879471.
  31. Tomar, S. K. and Kaur, J. (2007), "SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space", Acta Mechanica, 190(1-4), 1-28. https://doi.org/10.1007/s00707-006-0423-7.
  32. Vinh, P. C. and Seriani, G. (2010), "Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity", Appl. Math. Comput., 215(10), 3515-3525. https://doi.org/10.1016/j.amc.2009.10.047.
  33. Whittaker, E. T. and Watson, G. N. (1991), A Course of Modern Analysis, Cambridge University Press, Cambridge.
  34. Winkler, K. and Nur, A. (1979), "Pore fluids and seismic attenuation in rocks", Geophysical Res. Lett., 6(1), 1-4. https://doi.org/10.1029/GL006i001p00001.