DOI QR코드

DOI QR Code

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

  • Bozyigit, Baran (Department of Civil Engineering, Dokuz Eylul University) ;
  • Yesilce, Yusuf (Department of Civil Engineering, Dokuz Eylul University) ;
  • Wahab, Magd Abdel (Division of Computational Mechanics, Ton Duc Thang University)
  • 투고 : 2019.04.03
  • 심사 : 2019.11.12
  • 발행 : 2020.04.10

초록

The aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT.

키워드

참고문헌

  1. MATLAB (2014), MATLAB R2014b, The MathWorks Inc., MI, U.S.A.
  2. SAP2000 (2013), SAP2000 V 16.0.0, Integrated Solution for Structural Analysis & Design, Computers & Structures Inc., U.S.A.
  3. Anagnostides, G. (1986), "Frame response to a harmonic excitation, taking into account the effects of shear deformation and rotary inertia", Comput. Struct., 24(2), 295-304. https://doi.org/10.1016/0045-7949(86)90287-7.
  4. Areias, P. and Rabczuk, T. (2013), "Finite strain fracture of plates and shells with configurational forces and edge rotations", Int. J. Numer. Meth. Eng., 94(12), 1099-1122. https://doi.org/10.1002/nme.4477.
  5. Areias, P., Rabczuk, T. and Msekh, M.A. (2016), "Phase-field analysis of finite-strain plates and shells including element subdivision", Comput. Method Appl. M., 312, 322-350 https://doi.org/10.1016/j.cma.2016.01.020.
  6. Attar, M. (2012), "A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions", Int. J. Mech. Sci., 57(1), 19-33. https://doi.org/10.1016/j.ijmecsci.2012.01.010.
  7. Attar, M., Karrech, A. and Regenauer-Lieb, K. (2014), "Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model", J. Sound Vib., 333(11), 2359-2377. https://doi.org/10.1016/j.jsv.2013.11.013
  8. Barad, K.H., Sharma, D.S. and Vyas, V. (2013), "Crack Detection in Cantilever Beam by Frequency based Method", Procedia Eng., 51, 770-775. https://doi.org/10.1016/j.proeng.2013.01.110
  9. Bickford, W.B. (1982), "Consistent higher order beam theory", Developments in Theoretical and Applied Mechanics, Springer, Germany.
  10. Bozyigit, B. and Yesilce, Y. (2018), "Natural frequencies and harmonic responses of multi-story frames using single variable shear deformation theory", Mech. Res. Commun., 92, 28-36. https://doi.org/10.1016/j.mechrescom.2018.06.007
  11. Brasiliano, A., Doz, G.N. and de Brito, J.L.V. (2004), "Damage identification in continuous beams and frame structures using the Residual Error Method in the Movement Equation", Nucl. Eng. Des., 227(1), 1-17. https://doi.org/10.1016/j.nucengdes.2003.07.006
  12. Caddemi, S. and Calio, I. (2013), "The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures", J. Sound Vib., 332(12), 3049-3063. https://doi.org/10.1016/j.jsv.2013.01.003
  13. Carden, E.P. and Fanning, P. (2004), "Vibration Based Condition Monitoring: A Review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500.
  14. Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), "A CONTINUOUS CRACKED BEAM VIBRATION THEORY", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640.
  15. Cunedioglu, Y (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech.,, 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
  16. Dastjerdi, S. and Abbasi, M. (2019), "A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method", Ultramicroscopy, 196, 33-39 https://doi.org/10.1016/j.ultramic.2018.09.014
  17. Elshamy, M., Crosby, W.A. and Elhadary, M. (2018), "Crack detection of cantilever beam by natural frequency tracking using experimental and finite element analysis", Alexandria Eng. J., 57(4), 3755-3766. https://doi.org/10.1016/j.aej.2018.10.002.
  18. Gillich, G-R, Furdui, H, Abdel Wahab, M and Korka, Z-I (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Processing., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037
  19. Greco, A. and Pau, A. (2012), "Damage identification in Euler frames", Comput. Struct., 92-93, 328-336. https://doi.org/10.1016/j.compstruc.2011.10.007.
  20. Han, S.M., Benaroya, H. and Wei, T. (1999), "DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257.
  21. Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1.
  22. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Abdel Wahab, M. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mécanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008.
  23. Khatir, S. and Abdel Wahab, M. (2019), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fracture Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032.
  24. Khatir, S., Abdel Wahab, M., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017.
  25. Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency analysis of a multiple cracked beam", J. Sound Vib., 245(4), 737-751. https://doi.org/10.1006/jsvi.2001.3585
  26. Khiem, N.T. and Lien, T.V. (2004), "Multi-crack detection for beam by the natural frequencies", J. Sound Vib., 273(1), 175-184. https://doi.org/10.1016/S0022-460X(03)00424-3
  27. Khiem, N.T. and Toan, L.K. (2014), "A novel method for crack detection in beam-like structures by measurements of natural frequencies", J. Sound Vib., 333(18), 4084-4103. https://doi.org/10.1016/j.jsv.2014.04.031.
  28. Khnaijar, A. and Benamar, R. (2017), "A new model for beam crack detection and localization using a discrete model", Eng. Struct., 150, 221-230. https://doi.org/10.1016/j.engstruct.2017.07.034.
  29. Kim, K., Kim, S., Sok, K., Pak, C. and Han, K. (2018), "A modeling method for vibration analysis of cracked beam with arbitrary boundary condition", J. Ocean Eng. Sci., 3(4), 367-381. https://doi.org/10.1016/j.joes.2018.11.003.
  30. Kindova-Petrova, D. (2014), "Vibration-Based Methods for Detecting A Crack In A Simply Supported Beam", J. Theor. Appl. Mech., 44(4), 69-82. https://doi.org/10.2478/jtam-2014-0023.
  31. Labib, A., Kennedy, D. and Featherston, C. (2014), "Free vibration analysis of beams and frames with multiple cracks for damage detection", J. Sound Vib., 333(20), 4991-5003. https://doi.org/10.1016/j.jsv.2014.05.015.
  32. Lee, J.W. and Lee, J.Y. (2017), "In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method", Meccanica, 52(4), 1143-1157. 10.1007/s11012-016-0449-4.
  33. Lee, J.W. and Lee, J.Y. (2017), "A transfer matrix method capable of determining the exact solutions of a twisted Bernoulli-Euler beam with multiple edge cracks", Appl. Math. Model., 41, 474-493 https://doi.org/10.1016/j.apm.2016.09.013.
  34. Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4.
  35. Loya, J.A., Rubio, L. and Fernandez-Saez, J. (2006), "Natural frequencies for bending vibrations of Timoshenko cracked beams", J. Sound Vib., 290(3), 640-653. https://doi.org/10.1016/j.jsv.2005.04.005.
  36. Moezi, S.A., Zakeri, E. and Zare, A. (2018), "Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder-Mead optimization method", Mech. Syst. Signal Pr., 99, 805-831. https://doi.org/10.1016/j.ymssp.2017.07.013.
  37. Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T. (2015), "An extended isogeometric thin shell analysis based on Kirchhoff-Love theory", Comput. Method Appl. M., 284, 265-291. https://doi.org/10.1016/j.cma.2014.08.025.
  38. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Method Appl. M., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002.
  39. Nguyen, N.-T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Method Appl. M., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
  40. Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Method Appl. M., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
  41. Nguyen, T.N., Thai, C.H. and Nguyen-Xuan, H. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012.
  42. Nikolakopoulos, P.G., Katsareas, D.E. and Papadopoulos, C.A. (1997), "Crack identification in frame structures", Comput. Struct., 64(1), 389-406. https://doi.org/10.1016/S0045-7949(96)00120-4.
  43. Ntakpe, J.L., Gillich, G.R., Muntean, F., Praisach, Z.I. and Lorenz, P. (2014), "Vibration-Based Crack Detection in L-Frames", Appl. Mech. Mater., 658, 261-268 10.4028/www.scientific.net/AMM.658.261.
  44. Ostachowicz, W.M. and Krawczuk, M. (1991), "Analysis of the effect of cracks on the natural frequencies of a cantilever beam", J. Sound Vib., 150(2), 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q.
  45. Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Meth. Eng., 72(5), 524-548. https://doi.org/10.1002/nme.2013.
  46. Rabczuk, T., Gracie, R., Song, J.-H. and Belytschko, T. (2010), "Immersed particle method for fluid-structure interaction", Int. J. Numer. Meth. Eng., 81(1), 48-71. https://doi.org/10.1002/nme.2670.
  47. Rao, S.S. (1995), Mechanical Vibrations, Edison-Wesley Publishing Company, U.S.A.
  48. Satpute, D., Baviskar, P., Gandhi, P., Chavanke, M. and Aher, T. (2017), "Crack Detection in Cantilever Shaft Beam Using Natural Frequency", Mater. Today-Proc., 4(2), 1366-1374. https://doi.org/10.1016/j.matpr.2017.01.158.
  49. Shahverdi, H., Navardi, MM (2017), "Free vibration analysis of cracked thin plates using generalized differential quadrature element method", Struct. Eng. Mech., 62(3), 345-355. https://doi.org/10.12989/sem.2017.62.3.345
  50. Shimpi, R.P., Shetty, R.A. and Guha, A. (2017), "A simple single variable shear deformation theory for a rectangular beam", P. I. Mech. Eng. C-J. Mec., 231(24), 4576-4591. https://doi.org/10.1177/0954406216670682.
  51. Tan, G.J., Shan, J.H., Wu, C.L. and Wang, W.S. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551
  52. Thalapil, J. and Maiti, S.K. (2014), "Detection of longitudinal cracks in long and short beams using changes in natural frequencies", Int. J. Mech. Sci., 83, 38-47. https://doi.org/10.1016/j.ijmecsci.2014.03.022.
  53. Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
  54. Umar, S., Bakhary, N. and Abidin, A.R.Z. (2018), "Response surface methodology for damage detection using frequency and mode shape", Measurement, 115, 258-268. https://doi.org/10.1016/j.measurement.2017.10.047.

피인용 문헌

  1. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  2. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  3. Hybrid model for the analysis of the modal properties of a ball screw vibration system vol.35, pp.2, 2020, https://doi.org/10.1007/s12206-021-0104-4