참고문헌
- MATLAB (2014), MATLAB R2014b, The MathWorks Inc., MI, U.S.A.
- SAP2000 (2013), SAP2000 V 16.0.0, Integrated Solution for Structural Analysis & Design, Computers & Structures Inc., U.S.A.
- Anagnostides, G. (1986), "Frame response to a harmonic excitation, taking into account the effects of shear deformation and rotary inertia", Comput. Struct., 24(2), 295-304. https://doi.org/10.1016/0045-7949(86)90287-7.
- Areias, P. and Rabczuk, T. (2013), "Finite strain fracture of plates and shells with configurational forces and edge rotations", Int. J. Numer. Meth. Eng., 94(12), 1099-1122. https://doi.org/10.1002/nme.4477.
- Areias, P., Rabczuk, T. and Msekh, M.A. (2016), "Phase-field analysis of finite-strain plates and shells including element subdivision", Comput. Method Appl. M., 312, 322-350 https://doi.org/10.1016/j.cma.2016.01.020.
- Attar, M. (2012), "A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions", Int. J. Mech. Sci., 57(1), 19-33. https://doi.org/10.1016/j.ijmecsci.2012.01.010.
- Attar, M., Karrech, A. and Regenauer-Lieb, K. (2014), "Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model", J. Sound Vib., 333(11), 2359-2377. https://doi.org/10.1016/j.jsv.2013.11.013
- Barad, K.H., Sharma, D.S. and Vyas, V. (2013), "Crack Detection in Cantilever Beam by Frequency based Method", Procedia Eng., 51, 770-775. https://doi.org/10.1016/j.proeng.2013.01.110
- Bickford, W.B. (1982), "Consistent higher order beam theory", Developments in Theoretical and Applied Mechanics, Springer, Germany.
- Bozyigit, B. and Yesilce, Y. (2018), "Natural frequencies and harmonic responses of multi-story frames using single variable shear deformation theory", Mech. Res. Commun., 92, 28-36. https://doi.org/10.1016/j.mechrescom.2018.06.007
- Brasiliano, A., Doz, G.N. and de Brito, J.L.V. (2004), "Damage identification in continuous beams and frame structures using the Residual Error Method in the Movement Equation", Nucl. Eng. Des., 227(1), 1-17. https://doi.org/10.1016/j.nucengdes.2003.07.006
- Caddemi, S. and Calio, I. (2013), "The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures", J. Sound Vib., 332(12), 3049-3063. https://doi.org/10.1016/j.jsv.2013.01.003
- Carden, E.P. and Fanning, P. (2004), "Vibration Based Condition Monitoring: A Review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500.
- Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), "A CONTINUOUS CRACKED BEAM VIBRATION THEORY", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640.
- Cunedioglu, Y (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech.,, 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
- Dastjerdi, S. and Abbasi, M. (2019), "A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method", Ultramicroscopy, 196, 33-39 https://doi.org/10.1016/j.ultramic.2018.09.014
- Elshamy, M., Crosby, W.A. and Elhadary, M. (2018), "Crack detection of cantilever beam by natural frequency tracking using experimental and finite element analysis", Alexandria Eng. J., 57(4), 3755-3766. https://doi.org/10.1016/j.aej.2018.10.002.
- Gillich, G-R, Furdui, H, Abdel Wahab, M and Korka, Z-I (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Processing., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037
- Greco, A. and Pau, A. (2012), "Damage identification in Euler frames", Comput. Struct., 92-93, 328-336. https://doi.org/10.1016/j.compstruc.2011.10.007.
- Han, S.M., Benaroya, H. and Wei, T. (1999), "DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257.
- Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1.
- Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Abdel Wahab, M. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mécanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008.
- Khatir, S. and Abdel Wahab, M. (2019), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fracture Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032.
- Khatir, S., Abdel Wahab, M., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017.
- Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency analysis of a multiple cracked beam", J. Sound Vib., 245(4), 737-751. https://doi.org/10.1006/jsvi.2001.3585
- Khiem, N.T. and Lien, T.V. (2004), "Multi-crack detection for beam by the natural frequencies", J. Sound Vib., 273(1), 175-184. https://doi.org/10.1016/S0022-460X(03)00424-3
- Khiem, N.T. and Toan, L.K. (2014), "A novel method for crack detection in beam-like structures by measurements of natural frequencies", J. Sound Vib., 333(18), 4084-4103. https://doi.org/10.1016/j.jsv.2014.04.031.
- Khnaijar, A. and Benamar, R. (2017), "A new model for beam crack detection and localization using a discrete model", Eng. Struct., 150, 221-230. https://doi.org/10.1016/j.engstruct.2017.07.034.
- Kim, K., Kim, S., Sok, K., Pak, C. and Han, K. (2018), "A modeling method for vibration analysis of cracked beam with arbitrary boundary condition", J. Ocean Eng. Sci., 3(4), 367-381. https://doi.org/10.1016/j.joes.2018.11.003.
- Kindova-Petrova, D. (2014), "Vibration-Based Methods for Detecting A Crack In A Simply Supported Beam", J. Theor. Appl. Mech., 44(4), 69-82. https://doi.org/10.2478/jtam-2014-0023.
- Labib, A., Kennedy, D. and Featherston, C. (2014), "Free vibration analysis of beams and frames with multiple cracks for damage detection", J. Sound Vib., 333(20), 4991-5003. https://doi.org/10.1016/j.jsv.2014.05.015.
- Lee, J.W. and Lee, J.Y. (2017), "In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method", Meccanica, 52(4), 1143-1157. 10.1007/s11012-016-0449-4.
- Lee, J.W. and Lee, J.Y. (2017), "A transfer matrix method capable of determining the exact solutions of a twisted Bernoulli-Euler beam with multiple edge cracks", Appl. Math. Model., 41, 474-493 https://doi.org/10.1016/j.apm.2016.09.013.
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4.
- Loya, J.A., Rubio, L. and Fernandez-Saez, J. (2006), "Natural frequencies for bending vibrations of Timoshenko cracked beams", J. Sound Vib., 290(3), 640-653. https://doi.org/10.1016/j.jsv.2005.04.005.
- Moezi, S.A., Zakeri, E. and Zare, A. (2018), "Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder-Mead optimization method", Mech. Syst. Signal Pr., 99, 805-831. https://doi.org/10.1016/j.ymssp.2017.07.013.
- Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T. (2015), "An extended isogeometric thin shell analysis based on Kirchhoff-Love theory", Comput. Method Appl. M., 284, 265-291. https://doi.org/10.1016/j.cma.2014.08.025.
- Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Method Appl. M., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002.
- Nguyen, N.-T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Method Appl. M., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
- Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Method Appl. M., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
- Nguyen, T.N., Thai, C.H. and Nguyen-Xuan, H. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012.
- Nikolakopoulos, P.G., Katsareas, D.E. and Papadopoulos, C.A. (1997), "Crack identification in frame structures", Comput. Struct., 64(1), 389-406. https://doi.org/10.1016/S0045-7949(96)00120-4.
- Ntakpe, J.L., Gillich, G.R., Muntean, F., Praisach, Z.I. and Lorenz, P. (2014), "Vibration-Based Crack Detection in L-Frames", Appl. Mech. Mater., 658, 261-268 10.4028/www.scientific.net/AMM.658.261.
- Ostachowicz, W.M. and Krawczuk, M. (1991), "Analysis of the effect of cracks on the natural frequencies of a cantilever beam", J. Sound Vib., 150(2), 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q.
- Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Meth. Eng., 72(5), 524-548. https://doi.org/10.1002/nme.2013.
- Rabczuk, T., Gracie, R., Song, J.-H. and Belytschko, T. (2010), "Immersed particle method for fluid-structure interaction", Int. J. Numer. Meth. Eng., 81(1), 48-71. https://doi.org/10.1002/nme.2670.
- Rao, S.S. (1995), Mechanical Vibrations, Edison-Wesley Publishing Company, U.S.A.
- Satpute, D., Baviskar, P., Gandhi, P., Chavanke, M. and Aher, T. (2017), "Crack Detection in Cantilever Shaft Beam Using Natural Frequency", Mater. Today-Proc., 4(2), 1366-1374. https://doi.org/10.1016/j.matpr.2017.01.158.
- Shahverdi, H., Navardi, MM (2017), "Free vibration analysis of cracked thin plates using generalized differential quadrature element method", Struct. Eng. Mech., 62(3), 345-355. https://doi.org/10.12989/sem.2017.62.3.345
- Shimpi, R.P., Shetty, R.A. and Guha, A. (2017), "A simple single variable shear deformation theory for a rectangular beam", P. I. Mech. Eng. C-J. Mec., 231(24), 4576-4591. https://doi.org/10.1177/0954406216670682.
- Tan, G.J., Shan, J.H., Wu, C.L. and Wang, W.S. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551
- Thalapil, J. and Maiti, S.K. (2014), "Detection of longitudinal cracks in long and short beams using changes in natural frequencies", Int. J. Mech. Sci., 83, 38-47. https://doi.org/10.1016/j.ijmecsci.2014.03.022.
- Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
- Umar, S., Bakhary, N. and Abidin, A.R.Z. (2018), "Response surface methodology for damage detection using frequency and mode shape", Measurement, 115, 258-268. https://doi.org/10.1016/j.measurement.2017.10.047.
피인용 문헌
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Hybrid model for the analysis of the modal properties of a ball screw vibration system vol.35, pp.2, 2020, https://doi.org/10.1007/s12206-021-0104-4