참고문헌
- Bhinderwala, S. (1995), Insurance Loss Analysis of Single Family Dwellings Damaged in Hurricane Andrew, Clemson University.
- Dao, T.N., van de Lindt, J.W., Prevatt, D.O. and Gupta, R. (2012), "Probabilistic procedure for wood-frame roof sheathing panel debris impact to windows in hurricanes", Eng. Struct., 35, 178-187. https://doi.org/10.1016/j.engstruct.2011.11.009.
- FEMA (2017), HAZUS-MH 2.1 technical manual,
- Feng, R., Liu, F., Cai, Q., Yang, G. and Leng, J. (2018), "Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi", Wind Struct.,26(1), 11-24. https://doi.org/10.12989/was.2018.26.1.011.
- Huang, P., Tao, L., Quan, Y. and Gu, M. (2010), "Investigation of wind resistance performance of rural house in coastal areas of Zhejiang Province", J. Catast., 25(4), 90-95. https://doi.org/10.3969/j.issn.1000-811X.2010.04.018
- Huang, Y. and Gu, M. (2018), "Wind-induced responses of supertall buildings considering soil-structure interaction", Wind Struct., 27(4), 223-234. https://doi.org/10.12989/was.2018.27.4.223.
- Li, M. and Wang, G. (2018), "Research on the loss of group residential buildings under fierce winds", Natural Hazards, 90(2), 705-733. https://doi.org/10.1007/s11069-017-3066-1.
- Lin, L., Ang, A.H.S., Xia, D.-d., Hu, H.-t., Wang, H.-f. and He, F.-q. (2017), "Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures", Struct. Eng, Mech., Int. J., 63(6), 837-846. https://doi.org/10.12989/sem.2017.63.6.837.
- Lin, N. and Vanmarcke, E. (2010), "Windborne debris risk analysis - Part I. Introduction and methodology", Wind Struct., Int. J., 13(2), 191-206. https://doi.org/10.12989/was.2010.13.2.191
- Liu, X. (2016), The resistance analysis of low-rise buildings in strong wind, Dalian University of Technology.
- Long, P. (2008), Study on typhoon vulnerability assessment for civil engineering structures, Harbin Institute of Technology.
- Masters, F. and Gurley, K.R. (2003), "Non-Gaussian simulation: Cumulative distribution function map-based spectral correction", J. Eng. Mech.-Asce. 129(12), 1418-1428. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1418).
- Mitsuta, Y., Fujii, T. and Nagashima, I. (1996). "A Predicting Method of Typhoon Wind Damages". Probabi. Mech, Struct. Reliabi., 1996, 970-973.
- Peng, X., Rouche, D.B., Prevatt, D.O. and Gurley, K.R. (2016), An Engineering-Based Approach to Predict Tornado-Induced Damage, Springer, Berlin, Germany.
- Peng, X.L., Yang, L.P., Gavanski, E., Gurley, K. and Prevatt, D. (2014), "A comparison of methods to estimate peak wind loads on buildings", J. Wind Eng. Indust. Aerod. 126, 11-23. https://doi.org/10.1016/j.jweia.2013.12.013.
- Pinelli, J.P., Gurley, K.R., Subramanian, C.S., Hamid, S.S. and Pita, G.L. (2008), "Validation of a probabilistic model for hurricane insurance loss projections in Florida", Reliabi. Eng Sys. Safety. 93(12), 1896-1905. https://doi.org/10.1016/j.ress.2008.03.017.
- Pinelli, J.P., Pita, G., Gurley, K., Torkian, B., Hamid, S. and Subramanian, C. (2011), "Damage Characterization: Application to Florida Public Hurricane Loss Model", Natur. Haz. Rev., 12(4), 190-195. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000051
- Pinelli, J.P., Simiu, E., Gurley, K., Subramanian, C., Zhang, L., Cope, A., Filliben, J.J. and Hamid, S. (2004), "Hurricane damage prediction model for residential structures", J. Strut. Eng.-Asce., 130(11), 1685-1691. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1685)
- Pita, G.L., Pinelli, J.-P., Gurley, K.R. and Hamid, S. (2013), "Hurricane vulnerability modeling: Development and future trends", J. Wind Eng. Indust. Aerod., 114, 96-105. https://doi.org/10.1016/j.jweia.2012.12.004.
- Tachikawa, M. (1983), "Trajectories of flat plates in uniform flow with application to wind-generated missiles", J. Wind Eng. Indust. Aerod., 14(1), 443-453. https://doi.org/10.1016/0167-6105(83)90045-4.
- TPU (2007), Aerodynamic database for non-isolated low-rise buildings, Tokyo Polytechnic University.
- Vickery, P.J., Skerlj, P.F., Lin, J., Jr, L.A.T., Young, M.A. and Lavelle, F.M. (2006), "HAZUS-MH Hurricane Model Methodology. II: Damage and Loss Estimation", Natur. Haz. Rev., 7(2), 94-103. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94).
- Wang, D., Chen, X., Li, J. and Cheng, H. (2016), "Wind load characteristics of large billboard structures with two-plate and three-plate configurations", Wind Struct. Int. J., 22(6), 703-721. https://doi.org/10.12989/was.2016.22.6.703.
- Wang, Y. and Li, Q.S. (2015), "Wind pressure characteristics of a low-rise building with various openings on a roof corner", Wind Struct. Int. J., 21(1), 1-23. https://doi.org/10.12989/was.2015.21.1.001.
- Yang, L. and Gurley, K.R. (2015), "Efficient stationary multivariate non-Gaussian simulation based on a Hermite PDF model", Probabi. Eng. Mech., 42(4), 31-41. https://doi.org/10.1016/j.probengmech.2015.09.006.
- Zhang, S., Nishijima, K. and Maruyama, T. (2014), "Reliabilitybased modeling of typhoon induced wind vulnerability for residential buildings in Japan", J. Wind Eng. Indust. Aerod., 124 68-81. https://doi.org/10.1016/j.jweia.2013.11.004.
- Zhong, X., Fang, W. and Cao, S. (2017), "Probabilistic component-based Monte Carlo simulation of vulnerability for a typical low-rise rural residential building in coastal China", J. Beijing Normal University (Natural Science), 53(1), 51-59.