References
- Asadi, E., Wang, W. and Qatu, M.S. (2012), "Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94(2), 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011.
- Carrera, E. and Brischetto, S. (2009), "A comparison of various kinematic models for sandwich shell panels with soft core", J. Compos. Mater., 43(20), 2201-2221. https://doi.org/10.1177/0021998309343716.
- Carrera, E. and Brischetto, S., (2008) "Analysis of thickness locking in classical, refined and mixed theories for layered shells", Compos. Struct., 85 (1), 83-90. https://doi.org/10.1016/j.compstruct.2007.10.009.
- Carrera, E. and Valvano, S., (2017), "A variable kinematic shell formulation applied to thermal stress of laminated structures", J. Therm. Stress., 40(7), 803-827. https://doi.org/10.1080/01495739.2016.1253439.
- Cinefra, M., Carrera, E. and Fazzolari, F.A., (2013), "Some results on thermal stress of layered plates and shells by using unified formulation", J. Therm. Stress., 36(6), 589-625. https://doi.org/10.1080/01495739.2013.784122.
- Cinefra, M., Carrera, E., Brischetto, S. and Belouettar, S., (2010), "Thermo-mechanical analysis of functionally graded shells", J. Therm. Stress., 33(10), 942-963. https://doi.org/10.1080/01495739.2010.482379.
- Cinefra, M., Carrera, E., Lamberti, A. and Petrolo, M. (2015), "Results on best theories for metallic and laminated shells including layer-wise models", Compos. Struct., 126, 285-298. https://doi.org/10.1016/j.compstruct.2015.02.027.
- Lee, S.J. and Reddy, J.N. (2004) "Vibration suppression of laminated shell structures investigated using higher order shear deformation theory", Smart Mater. Struct., 13(5), 1176-1194. https://doi.org/10.1088/0964-1726/13/5/022.
- Liew, K.M., Zhao, X. and Ferreira, A.J.M. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
- Mantari, J.L. and Soares, C.G. (2012), "Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory", Compos. Struct., 94(8), 2640-2656. https://doi.org/10.1016/j.compstruct.2012.03.018.
- Mantari, J.L. and Soares, C.G. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B Eng., 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027.
- Mantari, J.L., Oktem, A.S. and Soares, C.G., (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B Eng., 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062.
- Matsunaga, H. (2007), "Vibration and stability of cross-ply laminated composite shallow shells subjected to in-plane stresses", Compos. Struct., 78(3), 377-391. https://doi.org/10.1016/j.compstruct.2005.10.013.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", ASME J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Eur. J. Mech. A/Solids, 37, 24-34. https://doi.org/10.1016/j.euromechsol.2012.05.005.
- Oktem, A.S., Mantari, J.L. and Soares, C.G. (2012), "Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory", Eur. J. Mech. A/Solids, 36, 163-172. https://doi.org/10.1016/j.euromechsol.2012.03.002.
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.
- Pradyumna, S. and Bandyopadhyay, J.N., (2008), "Static and free vibration analyses of laminated shells using a higher-order theory", J. Reinf. Plast. Compos., 27(2), 167-186. https://doi.org/10.1177/0731684407081385.
- Qatu, M.S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells", Appl. Mech. Rev., 55, 325-350. https://doi.org/10.1115/1.1483079.
- Qatu, M.S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells", Appl. Mech. Rev., 55, 415-434. https://doi.org/10.1115/1.1483078.
- Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73(1), 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013.
- Reddy, J.N. (1984a), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).
- Reddy, J.N. (1984b), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory", Compos. Struct., 219, 129-146. https://doi.org/10.1016/j.compstruct.2019.03.054.
- Tornabene, F. (2011), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006.
- Tornabene, F. (2011), "Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94(1), 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002.
- Tornabene, F. (2011), "Free vibrations of laminated composite doubly-curved shells and panels of revolution via the GDQ method", Comput. Methods Appl. Mech. Eng., 200(9-12), 931-952. https://doi.org/10.1016/j.cma.2010.11.017.
- Tornabene, F. and Viola, E. (2013), "Static analysis of functionally graded doubly-curved shells and panels of revolution", Meccanica, 48(4), 901-930. https://doi.org/10.1007/s11012-012-9643-1.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016), "On the mechanics of laminated doubly-curved shells subjected to point and line loads", Int. J. Eng. Sci., 109, 115-164. https://doi.org/10.1016/j.ijengsci.2016.09.001.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "Accurate inter-laminar recovery for plates and doubly-curved shells with variable radii of curvature using layer-wise theories", Compos. Struct., 124, 368-393. https://doi.org/10.1016/j.compstruct.2014.12.062.
- Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 107, 675-697. https://doi.org/10.1016/j.compstruct.2013.08.038.
- Tornabene, F., Liverani, A. and Caligiana, G. (2012), "General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian", J. Sound Vib., 331(22), 4848-4869. https://doi.org/10.1016/j.jsv.2012.05.036.
- Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009.
- Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annul plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
- Viola, E., Tornabene F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002.