참고문헌
- Abdulla, K., Cunningham, L. and Gillie, M. (2017), "Simulating masonry wall behaviour using a simplified micro-model approach", Eng. Struct., 151(15), 349-365. https://doi.org/10.1016/j.engstruct.2017.08.021.
- Ali, S.S. and Page, A.W. (1988), "Finite element model for masonry subjected to concentrated loads", J. Struct. Eng., 114(8), 1761-1784. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1761).
- Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2015), "Determination of the restoration effect on the structural behavior of masonry arch bridges", Smart Struct. Syst., 16(1), 101-139. http://dx.doi.org/10.12989/sss.2015.16.1.101.
- Altunisik, A.C., Bayraktar, A., Sevim, B. and Birinci F. (2011), "Vibration-based operational modal analysis of the Mikron historic arch bridge after restoration", Civil Eng. Environ. Syst., 28(3), 247-259. https://doi.org/10.1080/10286608.2011.588328.
- Aras, F. and Altay, G. (2015), "Investigation of mechanical properties of masonry in historic buildings", Gradevinar, 67(5), https://doi.org/10.14256/JCE.1145.2014.
- Ataei, S., Miri, A. and Jahangiri, M. (2017), "Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing", Int. J. Arch. Herit., 11(8), 1086-1100. https://doi.org/10.1080/15583058.2017.1317882.
- Aydin, A.C. and Ozkaya, S.G. (2018), "The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge)", Eng. Fail. Anal., 84, 131-138. https://doi.org/10.1016/j.engfailanal.2017.11.002.
- Bayraktar, A., Altunisik, A.C., Birinci, F., Sevim, B. and Turker, T. (2010), "Finite-element analysisand vibration testing of a two-span masonry arch bridge", J. Perform. Constr. Facil., 24(1), 46-52. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000060.
- Bayraktar, A., Birinci, F., Altunisik, A.C., Turker, T. and Sevim, B. (2009), "Finite element model updating of Senyuva historical arch bridge using ambient vibration tests", Balt. J. Road Bridge Eng., 4(4), 177-185. https://doi.org/10.3846/1822-427X.2009.4.177-185.
- Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75(30), 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.
- Bolhassani, M., Hamid, A.A., Lau, A.C.W. and Moon, F. (2015), "Simplified micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83(15), 159-173. https://doi.org/10.1016/j.conbuildmat.2015.03.021.
- Boothby, T.E. (2001), "Analysis of masonry arches and vaults", Prog. Struct. Eng. Mater., 3(3), 246-256. https://doi.org/10.1002/pse.84.
- Camanho, P.O. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", Report No. 20020053651, NASA Langley Research Center, Varginia, U.S.A.
- Casolo, S. (1999), "Rigid element model for non-linear analysis of masonry facades subjected to out-of-plane loading", Commun. Numer. Meth. Eng., 15(7), 457-468. https://doi.org/10.1002/(SICI)10990887(199907)15:7<457::AID-CNM259>3.0.CO;2-W.
- Cavalagli, N., Gusella, V. and Severini L. (2016), "Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches", Int. J. Mech. Sci., 115-116, 645-656. https://doi.org/10.1016/j.ijmecsci.2016.07.015.
- Cavicchi, A. and Gambarotta, L. (2005), "Collapse analysis of masonry bridges taking into account arch-fill interaction", Eng. Struct., 27(4), 605-615. https://doi.org/10.1016/j.engstruct.2004.12.002.
- Cavicchi, A. and Gambarotta, L. (2007), "Lower bound limit analysis of masonry bridges including arch-fill interaction", Eng. Struct., 29(11), 3002-3014. https://doi.org/10.1016/j.engstruct.2007.01.028.
- Chajes, M. (2002), Load Rating of Arch Bridges, Delaware Center for Transportation, University of Delaware, Delaware, U.S.A.
- Costa, C., Arede, A., Morais, M. and Anibal, A. (2015), "Detailed FE and DE modelling of stone masonry arch bridges for the assessment of load-carrying capacity", Procedia Eng., 114, 854-861. https://doi.org/10.1016/j.proeng.2015.08.039.
- Costa, C., Ribeiro, D., Jorge, P., Silva, R., Arede, A. and Calcada, R. (2016), "Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters", Eng. Struct., 123(15), 354-371. https://doi.org/10.1016/j.engstruct.2016.05.044
- Dassault Systemes Simulia Corp. (2010), Abaqus v13, Providence, Rhode Island, U.S.A.
- Disaster and Emergency Management Authority Presidential Earthquake Department (2019), AFAD Earthquakes, http://www.deprem.gov.tr/en/Category/earthquake-zoning-map-96531.
- Disaster and Emergency Management Authority Presidential of Earthquake Department (2019), AFAD Earthquakes, Web-4, http://www.deprem.gov.tr/en/home.
- Doherty, K. (2000), "An investigation of the weak links in the seismic load path of unreinforced masonry building", Ph.D. Thesis, University of Adelaide, Adelaide, Australia.
- Erdogmus, E. and Boothby, T. (2004), "Strength of Spandrel Walls in Masonry Arch Bridges", Tran. Res. Rec. J. Transp. Res. Board, 1892(1), 47-55. https://doi.org/10.3141/1892-06.
- Eurocode 6. (1996), Design of Masonry Structures, European Union, Brussel, Belgium.
- Fanning, P., Boothby, T.E. and Roberts, B.J. (2001), "Longitudinal and transverse effects in masonry arch assessment", Constr. Build. Mater., 15(1), 51-60. https://doi.org/10.1016/S0950-0618(00)00069-6.
- Fanning, P.J. and Boothby, T.E. (2001), "Three-dimensional modelling and full-scale testing of stone arch bridges", Comput. Struct., 79(29-30), 2645-2662. https://doi.org/10.1016/S0045-7949(01)00109-2.
- Gago, A.S., Alfaiate, J. and Lamas, A. (2011), "The effect of the infill in arched structures: Analytical and numerical modelling", Eng. Struct., 33(5), 1450-1458. https://doi.org/10.1016/j.engstruct.2010.12.037.
- Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environ. Earth Sci., 75, 1421. https://doi.org/10.1007/s12665-016-6230-0.
- Karaton, M., Aksoy, H.S., Sayin, E. and Calayir, Y. (2017), "Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels", Eng. Fail. Anal., 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017.
- Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007), "Stress-strain characteristics of clay brick masonry under uniaxial compression", J. Mater. Civil Eng., 19(9), 728-739. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728).
- Kowalewski, L. and Gajewski, M. (2015), "Determination of failure modes in brick walls using cohesive elements", Procedia Eng., 111, 454-461. https://doi.org/10.1016/j.proeng.2015.07.116.
- Lancioni, G., Gentilucci, D., Quagliarini, E. and Lenci, S. (2016), "Seismic vulnerability of ancient stone arches by using a numerical model based on the non-smooth contact dynamics method", Eng. Struct., 119(15), 110-121. https://doi.org/10.1016/j.engstruct.2016.04.001.
- Loo, Y.C. and Yang, Y. (1991), "Cracking and failure analysis of masonry arch bridges", J. Struct. Eng., 117(6), 1641-1659. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1641).
- Lourenco, P.B. (1996), "Computational strategies for masonry structures", TU Delft, Delft University of Technology, The Delft, Netherlands.
- Lourenco, P.B. and Rots, J.G. (1997), "Multi surface interface model for analysis of masonry structures", J. Eng. Mech., 123(7), 660-668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).
- Macorini, L. and Izzuddin, B.A. (2011), "A non-linear interface element for 3D mesoscale analysis of brick-masonry structures", Int. J. Numer. Meth. Eng., 85(12), 1584-1608. https://doi.org/10.1002/nme.3046.
- Martinelli, P., Galli, A., Barazzetti, L., Colombo, M., Felicetti, R., Previtali, M., Roncoroni, F., Scola, M. and di Prisco, M. (2017), "Bearing capacity assessment of a 14th century arch bridge in Lecco (Italy)", Int. J. Archit. Herit., 12(2), 237-256. https://doi.org/10.1080/15583058.2017.1399482.
- Michiels, T. and Adriaenssens, S. (2018), "Form-finding algorithm for masonry arches subjected to in-plane earthquake loading", Comput. Struct., 195(15), 85-98. https://doi.org/10.1016/j.compstruc.2017.10.001.
- Milani, G. and Lourenco, P.L. (2012), "3D non-linear behavior of masonry arch bridges", Comput. Struct., 110-111, 133-150. https://doi.org/10.1016/j.compstruc.2012.07.008.
- Milani, G. and Tralli, A. (2011), "Simple SQP approach for out-of-plane loaded homogenized brickwork panels, accounting for softening", Comput. Struct., 89(1-2), 201-215. https://doi.org/10.1016/j.compstruc.2010.09.005.
- Moreira, V.N., Matos, J.C. and Oliveira, D.V. (2017), "Probabilistic-based assessment of a masonry arch bridge considering inferential procedures", Eng. Struct., 134(1), 61-73. https://doi.org/10.1016/j.engstruct.2016.11.067.
- Naderi, M. and Zekavati, M. (2018), "Assessment of seismic behavior stone bridge using a finite element method and discrete element method", Earthq. Struct., 14(4), 297-303. https://doi.org/10.12989/eas.2018.14.4.297.
- Orduna, A. (2005), "Seismic assessment of ancient masonry structures by rigid blocks limit analysis", Ph.D. Thesis, University of Minho, Braga, Portugal.
- Ozturk, S., Bayraktar, A., Hokelekli, E. and Ashour, A. (2019), "Nonlinear structural performance of a historical brick masonry inverted dome", Int. J. Arch. Herit., 1-19. https://doi.org/10.1080/15583058.2019.1592265.
- Page, J. (1993), "Repair and strengthening of arch bridges", Proceedings of the IABSE Symposium: Structural Preservation of the Architectural Heritage, Rome, Italy, September.
- Porto, F., Tecchio, G., Zampieri, P., Modena, C. and Prot, A. (2016), "Simplified seismic assessment of railway masonry arch bridges by limit analysis", Struct. Infrastr. Eng., 12(5), 567-591. https://doi.org/10.1080/15732479.2015.1031141.
- Restoration Project (2014), "Malabadi bridge report", Diyarbakir, Turkey.
- Rota, M. (2004), "Seismic vulnerability of masonry arch bridge walls", M.Sc. Thesis, University of Pavia, Pavia, Italy.
- Rota, M., Pecker, A., Bolognini, D. and Pinho, R. (2005), "A methodology for seismic vulnerability of masonry arch bridge walls", J. Earthq. Eng., 9(2), 331-353, https://doi.org/10.1142/S1363246905002432.
- Sacco, E. and Toti, J. (2010), "Interface elements for the analysis of masonry structures", Int. J. Comput. Meth. Eng. Sci. Mech., 11(6), 354-373. https://doi.org/10.1080/15502287.2010.516793
- Salih, S.A. (2018), "Rate-dependent cohesive-zone models for fracture and fatigue", Ph.D. Thesis, University of Manchester, Manchester, England, U.K.
- Sarhosis, V., De Santis, S. and de Felice, G. (2016), "A review of experimental investigations and assessment methods for masonry arch", Struct. Infrastr. Eng., 12(11), 1439-1464. http://dx.doi.org/10.1080/15732479.2015.1136655.
- Sert, H.,Yilmaz, S., Partal, E.M., Demirci, H., Avsin, A., Nas, M., Turan, S. (2015) "Tarihi Malabadi (Batman Su) Koprusu'nde Yurutulen Restorasyon-Konservasyon Calismalari, 5. Tarihi Eserlerin Guclendirilmesi ve Gelecege Guvenle Devredilmesi Sempozyumu, 1-2 Ekim 2015", 144-153, Erzurum, Turkey. (in Turkish)
- Severini, L., Cavalagli, N., DeJong, M. and Gusella, V. (2018), "Dynamic response of masonry arch with geometrical irregularities subjected to a pulse-type ground motion", Nonlin. Dyn., 91, 609-624. https://doi.org/10.1007/s11071-017-3897-z.
- Sevim, B., Atamturktur, S., Altunisik, A.C. and Bayraktar, A. (2016), "Ambient vibration testing and seismic behavior of historical arch bridges under near and far fault ground motions", Bull. Earthq. Eng., 14, 241-259. https://doi.org/10.1007/s10518-015-9810-6.
- Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011a), "Finite element model calibration effects on the earthquake response of masonry arch bridges", Fin. Elem. Anal. Des., 47(7), 621-634. https://doi.org/10.1016/j.finel.2010.12.011.
- Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011b), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlin. Dyn., 63, 755-770. https://doi.org/10.1007/s11071-010-9835-y.
- Shi, Y.N. (2016), "Dynamic behaviour of Masonry structures", Ph.D. Dissertation, University of Bath, Bath, U.K.
- Stavroulaki, M.E., Riveiro, B., Drosopoulos, G.A., Solla, M., Koutsianitis, P. and Stavroulakis, G.E. (2016), "Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements", Adv. Eng. Softw., 101, 136-148. https://doi.org/10.1016/j.advengsoft.2015.12.007.
- Thompson, D.R. (1995), "Assessment of spandrel walls. Arch bridge", Proceedings of the 1st International Conference on Arch Bridges, Bolton, U.K., September.
- UIC Code 778-3R (1994), "Recommendations for the inspection, assessment and maintenance of masonry arch bridges", International Union of Railways, Paris, France.
- UNESCO (2018), UNESCO global strategy tentative lists, UNESCO, Paris, France. https://whc.unesco.org/en/tentativelists/6113.
- Wang, J. (2014), "Numerical modelling of masonry arch bridges: Investigation of spandrel wall failure", Ph.D. Thesis, University of Bath, Bath, U.K.
- Zampieri, P., Faleschini, F., Zanini, M.A., Simoncello, N. (2018), "Collapse mechanisms of masonry arches with settled springing", Eng. Struct., 156(1), 363-374. https://doi.org/10.1016/j.engstruct.2017.11.048.
- Zampieri, P., Tecchio, G., da Porto, F. and Modena, C. (2015), "Limit analysisof transverse seismic capacity of multi-span masonry arch bridges", Bull. Earthq. Eng., 13, 1557-1579. https://doi.org/10.1007/s10518-014-9664-3.
- Zhang, Y. (2015), "Advanced nonlinear analysis of masonry arch bridges", Ph.D. Thesis, Imperial College London, London, U.K.
- Zhang, Y., Macorini, L. and Izzuddin, B.A. (2018), "Numerical investigation of arches in brick-masonry bridges", Struct. Infrastr. Eng., 14(1), 14-32. https://doi.org/10.1080/15732479.2017.1324883.