DOI QR코드

DOI QR Code

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Received : 2019.10.16
  • Accepted : 2019.09.12
  • Published : 2020.01.25

Abstract

The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Keywords

References

  1. Abdulla, K., Cunningham, L. and Gillie, M. (2017), "Simulating masonry wall behaviour using a simplified micro-model approach", Eng. Struct., 151(15), 349-365. https://doi.org/10.1016/j.engstruct.2017.08.021.
  2. Ali, S.S. and Page, A.W. (1988), "Finite element model for masonry subjected to concentrated loads", J. Struct. Eng., 114(8), 1761-1784. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1761).
  3. Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2015), "Determination of the restoration effect on the structural behavior of masonry arch bridges", Smart Struct. Syst., 16(1), 101-139. http://dx.doi.org/10.12989/sss.2015.16.1.101.
  4. Altunisik, A.C., Bayraktar, A., Sevim, B. and Birinci F. (2011), "Vibration-based operational modal analysis of the Mikron historic arch bridge after restoration", Civil Eng. Environ. Syst., 28(3), 247-259. https://doi.org/10.1080/10286608.2011.588328.
  5. Aras, F. and Altay, G. (2015), "Investigation of mechanical properties of masonry in historic buildings", Gradevinar, 67(5), https://doi.org/10.14256/JCE.1145.2014.
  6. Ataei, S., Miri, A. and Jahangiri, M. (2017), "Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing", Int. J. Arch. Herit., 11(8), 1086-1100. https://doi.org/10.1080/15583058.2017.1317882.
  7. Aydin, A.C. and Ozkaya, S.G. (2018), "The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge)", Eng. Fail. Anal., 84, 131-138. https://doi.org/10.1016/j.engfailanal.2017.11.002.
  8. Bayraktar, A., Altunisik, A.C., Birinci, F., Sevim, B. and Turker, T. (2010), "Finite-element analysisand vibration testing of a two-span masonry arch bridge", J. Perform. Constr. Facil., 24(1), 46-52. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000060.
  9. Bayraktar, A., Birinci, F., Altunisik, A.C., Turker, T. and Sevim, B. (2009), "Finite element model updating of Senyuva historical arch bridge using ambient vibration tests", Balt. J. Road Bridge Eng., 4(4), 177-185. https://doi.org/10.3846/1822-427X.2009.4.177-185.
  10. Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75(30), 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.
  11. Bolhassani, M., Hamid, A.A., Lau, A.C.W. and Moon, F. (2015), "Simplified micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83(15), 159-173. https://doi.org/10.1016/j.conbuildmat.2015.03.021.
  12. Boothby, T.E. (2001), "Analysis of masonry arches and vaults", Prog. Struct. Eng. Mater., 3(3), 246-256. https://doi.org/10.1002/pse.84.
  13. Camanho, P.O. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", Report No. 20020053651, NASA Langley Research Center, Varginia, U.S.A.
  14. Casolo, S. (1999), "Rigid element model for non-linear analysis of masonry facades subjected to out-of-plane loading", Commun. Numer. Meth. Eng., 15(7), 457-468. https://doi.org/10.1002/(SICI)10990887(199907)15:7<457::AID-CNM259>3.0.CO;2-W.
  15. Cavalagli, N., Gusella, V. and Severini L. (2016), "Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches", Int. J. Mech. Sci., 115-116, 645-656. https://doi.org/10.1016/j.ijmecsci.2016.07.015.
  16. Cavicchi, A. and Gambarotta, L. (2005), "Collapse analysis of masonry bridges taking into account arch-fill interaction", Eng. Struct., 27(4), 605-615. https://doi.org/10.1016/j.engstruct.2004.12.002.
  17. Cavicchi, A. and Gambarotta, L. (2007), "Lower bound limit analysis of masonry bridges including arch-fill interaction", Eng. Struct., 29(11), 3002-3014. https://doi.org/10.1016/j.engstruct.2007.01.028.
  18. Chajes, M. (2002), Load Rating of Arch Bridges, Delaware Center for Transportation, University of Delaware, Delaware, U.S.A.
  19. Costa, C., Arede, A., Morais, M. and Anibal, A. (2015), "Detailed FE and DE modelling of stone masonry arch bridges for the assessment of load-carrying capacity", Procedia Eng., 114, 854-861. https://doi.org/10.1016/j.proeng.2015.08.039.
  20. Costa, C., Ribeiro, D., Jorge, P., Silva, R., Arede, A. and Calcada, R. (2016), "Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters", Eng. Struct., 123(15), 354-371. https://doi.org/10.1016/j.engstruct.2016.05.044
  21. Dassault Systemes Simulia Corp. (2010), Abaqus v13, Providence, Rhode Island, U.S.A.
  22. Disaster and Emergency Management Authority Presidential Earthquake Department (2019), AFAD Earthquakes, http://www.deprem.gov.tr/en/Category/earthquake-zoning-map-96531.
  23. Disaster and Emergency Management Authority Presidential of Earthquake Department (2019), AFAD Earthquakes, Web-4, http://www.deprem.gov.tr/en/home.
  24. Doherty, K. (2000), "An investigation of the weak links in the seismic load path of unreinforced masonry building", Ph.D. Thesis, University of Adelaide, Adelaide, Australia.
  25. Erdogmus, E. and Boothby, T. (2004), "Strength of Spandrel Walls in Masonry Arch Bridges", Tran. Res. Rec. J. Transp. Res. Board, 1892(1), 47-55. https://doi.org/10.3141/1892-06.
  26. Eurocode 6. (1996), Design of Masonry Structures, European Union, Brussel, Belgium.
  27. Fanning, P., Boothby, T.E. and Roberts, B.J. (2001), "Longitudinal and transverse effects in masonry arch assessment", Constr. Build. Mater., 15(1), 51-60. https://doi.org/10.1016/S0950-0618(00)00069-6.
  28. Fanning, P.J. and Boothby, T.E. (2001), "Three-dimensional modelling and full-scale testing of stone arch bridges", Comput. Struct., 79(29-30), 2645-2662. https://doi.org/10.1016/S0045-7949(01)00109-2.
  29. Gago, A.S., Alfaiate, J. and Lamas, A. (2011), "The effect of the infill in arched structures: Analytical and numerical modelling", Eng. Struct., 33(5), 1450-1458. https://doi.org/10.1016/j.engstruct.2010.12.037.
  30. Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environ. Earth Sci., 75, 1421. https://doi.org/10.1007/s12665-016-6230-0.
  31. Karaton, M., Aksoy, H.S., Sayin, E. and Calayir, Y. (2017), "Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels", Eng. Fail. Anal., 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017.
  32. Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007), "Stress-strain characteristics of clay brick masonry under uniaxial compression", J. Mater. Civil Eng., 19(9), 728-739. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728).
  33. Kowalewski, L. and Gajewski, M. (2015), "Determination of failure modes in brick walls using cohesive elements", Procedia Eng., 111, 454-461. https://doi.org/10.1016/j.proeng.2015.07.116.
  34. Lancioni, G., Gentilucci, D., Quagliarini, E. and Lenci, S. (2016), "Seismic vulnerability of ancient stone arches by using a numerical model based on the non-smooth contact dynamics method", Eng. Struct., 119(15), 110-121. https://doi.org/10.1016/j.engstruct.2016.04.001.
  35. Loo, Y.C. and Yang, Y. (1991), "Cracking and failure analysis of masonry arch bridges", J. Struct. Eng., 117(6), 1641-1659. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1641).
  36. Lourenco, P.B. (1996), "Computational strategies for masonry structures", TU Delft, Delft University of Technology, The Delft, Netherlands.
  37. Lourenco, P.B. and Rots, J.G. (1997), "Multi surface interface model for analysis of masonry structures", J. Eng. Mech., 123(7), 660-668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).
  38. Macorini, L. and Izzuddin, B.A. (2011), "A non-linear interface element for 3D mesoscale analysis of brick-masonry structures", Int. J. Numer. Meth. Eng., 85(12), 1584-1608. https://doi.org/10.1002/nme.3046.
  39. Martinelli, P., Galli, A., Barazzetti, L., Colombo, M., Felicetti, R., Previtali, M., Roncoroni, F., Scola, M. and di Prisco, M. (2017), "Bearing capacity assessment of a 14th century arch bridge in Lecco (Italy)", Int. J. Archit. Herit., 12(2), 237-256. https://doi.org/10.1080/15583058.2017.1399482.
  40. Michiels, T. and Adriaenssens, S. (2018), "Form-finding algorithm for masonry arches subjected to in-plane earthquake loading", Comput. Struct., 195(15), 85-98. https://doi.org/10.1016/j.compstruc.2017.10.001.
  41. Milani, G. and Lourenco, P.L. (2012), "3D non-linear behavior of masonry arch bridges", Comput. Struct., 110-111, 133-150. https://doi.org/10.1016/j.compstruc.2012.07.008.
  42. Milani, G. and Tralli, A. (2011), "Simple SQP approach for out-of-plane loaded homogenized brickwork panels, accounting for softening", Comput. Struct., 89(1-2), 201-215. https://doi.org/10.1016/j.compstruc.2010.09.005.
  43. Moreira, V.N., Matos, J.C. and Oliveira, D.V. (2017), "Probabilistic-based assessment of a masonry arch bridge considering inferential procedures", Eng. Struct., 134(1), 61-73. https://doi.org/10.1016/j.engstruct.2016.11.067.
  44. Naderi, M. and Zekavati, M. (2018), "Assessment of seismic behavior stone bridge using a finite element method and discrete element method", Earthq. Struct., 14(4), 297-303. https://doi.org/10.12989/eas.2018.14.4.297.
  45. Orduna, A. (2005), "Seismic assessment of ancient masonry structures by rigid blocks limit analysis", Ph.D. Thesis, University of Minho, Braga, Portugal.
  46. Ozturk, S., Bayraktar, A., Hokelekli, E. and Ashour, A. (2019), "Nonlinear structural performance of a historical brick masonry inverted dome", Int. J. Arch. Herit., 1-19. https://doi.org/10.1080/15583058.2019.1592265.
  47. Page, J. (1993), "Repair and strengthening of arch bridges", Proceedings of the IABSE Symposium: Structural Preservation of the Architectural Heritage, Rome, Italy, September.
  48. Porto, F., Tecchio, G., Zampieri, P., Modena, C. and Prot, A. (2016), "Simplified seismic assessment of railway masonry arch bridges by limit analysis", Struct. Infrastr. Eng., 12(5), 567-591. https://doi.org/10.1080/15732479.2015.1031141.
  49. Restoration Project (2014), "Malabadi bridge report", Diyarbakir, Turkey.
  50. Rota, M. (2004), "Seismic vulnerability of masonry arch bridge walls", M.Sc. Thesis, University of Pavia, Pavia, Italy.
  51. Rota, M., Pecker, A., Bolognini, D. and Pinho, R. (2005), "A methodology for seismic vulnerability of masonry arch bridge walls", J. Earthq. Eng., 9(2), 331-353, https://doi.org/10.1142/S1363246905002432.
  52. Sacco, E. and Toti, J. (2010), "Interface elements for the analysis of masonry structures", Int. J. Comput. Meth. Eng. Sci. Mech., 11(6), 354-373. https://doi.org/10.1080/15502287.2010.516793
  53. Salih, S.A. (2018), "Rate-dependent cohesive-zone models for fracture and fatigue", Ph.D. Thesis, University of Manchester, Manchester, England, U.K.
  54. Sarhosis, V., De Santis, S. and de Felice, G. (2016), "A review of experimental investigations and assessment methods for masonry arch", Struct. Infrastr. Eng., 12(11), 1439-1464. http://dx.doi.org/10.1080/15732479.2015.1136655.
  55. Sert, H.,Yilmaz, S., Partal, E.M., Demirci, H., Avsin, A., Nas, M., Turan, S. (2015) "Tarihi Malabadi (Batman Su) Koprusu'nde Yurutulen Restorasyon-Konservasyon Calismalari, 5. Tarihi Eserlerin Guclendirilmesi ve Gelecege Guvenle Devredilmesi Sempozyumu, 1-2 Ekim 2015", 144-153, Erzurum, Turkey. (in Turkish)
  56. Severini, L., Cavalagli, N., DeJong, M. and Gusella, V. (2018), "Dynamic response of masonry arch with geometrical irregularities subjected to a pulse-type ground motion", Nonlin. Dyn., 91, 609-624. https://doi.org/10.1007/s11071-017-3897-z.
  57. Sevim, B., Atamturktur, S., Altunisik, A.C. and Bayraktar, A. (2016), "Ambient vibration testing and seismic behavior of historical arch bridges under near and far fault ground motions", Bull. Earthq. Eng., 14, 241-259. https://doi.org/10.1007/s10518-015-9810-6.
  58. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011a), "Finite element model calibration effects on the earthquake response of masonry arch bridges", Fin. Elem. Anal. Des., 47(7), 621-634. https://doi.org/10.1016/j.finel.2010.12.011.
  59. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011b), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlin. Dyn., 63, 755-770. https://doi.org/10.1007/s11071-010-9835-y.
  60. Shi, Y.N. (2016), "Dynamic behaviour of Masonry structures", Ph.D. Dissertation, University of Bath, Bath, U.K.
  61. Stavroulaki, M.E., Riveiro, B., Drosopoulos, G.A., Solla, M., Koutsianitis, P. and Stavroulakis, G.E. (2016), "Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements", Adv. Eng. Softw., 101, 136-148. https://doi.org/10.1016/j.advengsoft.2015.12.007.
  62. Thompson, D.R. (1995), "Assessment of spandrel walls. Arch bridge", Proceedings of the 1st International Conference on Arch Bridges, Bolton, U.K., September.
  63. UIC Code 778-3R (1994), "Recommendations for the inspection, assessment and maintenance of masonry arch bridges", International Union of Railways, Paris, France.
  64. UNESCO (2018), UNESCO global strategy tentative lists, UNESCO, Paris, France. https://whc.unesco.org/en/tentativelists/6113.
  65. Wang, J. (2014), "Numerical modelling of masonry arch bridges: Investigation of spandrel wall failure", Ph.D. Thesis, University of Bath, Bath, U.K.
  66. Zampieri, P., Faleschini, F., Zanini, M.A., Simoncello, N. (2018), "Collapse mechanisms of masonry arches with settled springing", Eng. Struct., 156(1), 363-374. https://doi.org/10.1016/j.engstruct.2017.11.048.
  67. Zampieri, P., Tecchio, G., da Porto, F. and Modena, C. (2015), "Limit analysisof transverse seismic capacity of multi-span masonry arch bridges", Bull. Earthq. Eng., 13, 1557-1579. https://doi.org/10.1007/s10518-014-9664-3.
  68. Zhang, Y. (2015), "Advanced nonlinear analysis of masonry arch bridges", Ph.D. Thesis, Imperial College London, London, U.K.
  69. Zhang, Y., Macorini, L. and Izzuddin, B.A. (2018), "Numerical investigation of arches in brick-masonry bridges", Struct. Infrastr. Eng., 14(1), 14-32. https://doi.org/10.1080/15732479.2017.1324883.