References
- Abbas, A.M. and Manohar, C.S. (2007), "Reliability-based vector nonstationary random critical earthquake excitations for parametrically excited systems", Struct. Saf., 29(1), 32-48. https://doi.org/10.1016/j.strusafe.2005.11.003.
- Ahmadi, G. (1979), "On the application of the critical excitation method to aseismic design", J. Struct. Mech., 7(1), 55-63. https://doi.org/10.1080/03601217908905312.
- Akehashi, H. and Takewaki, I., (2019), "Optimal viscous damper placement for elastic-plastic MDOF structures under critical double impulse", Front. Built Environ., 5(20). http://hdl.handle.net/2433/237499.
- Ashtari, P. and Ghasemi, S.H. (2013), "Seismic design of structures using a modified non-stationary critical excitation", Earthq. Struct., 4(4), 383-396. http://dx.doi.org/10.12989/eas.2013.4.4.383.
- Au, S.K. (2006), "Critical excitation of SDOF elastoplastic systems", J. Sound Vib., 296(4-5), 714-733. https://doi.org/10.1016/j.jsv.2006.01.034.
- Cetin, H., Aydin, E. and Ozturk, B., (2019), "Optimal design and distribution of viscous dampers for shear building structures under seismic excitations", Front. Built Environ., 5, 1-13. https://doi.org/10.3389/fbuil.2019.00090.
- Drenick, R.F. (1970), "Model-free design of aseismic structures", J. Eng. Mech., 96(4), 483-493.
- Fukumoto, Y. and Takewaki, I. (2015), "Critical earthquake input energy to connected building structures using impulse input", Earthq. Struct., 9(6), 1133-1152. http://hdl.handle.net/2433/241753. https://doi.org/10.12989/eas.2015.9.6.1133
- Ghasemi, S.H. and Ashtari, P. (2014), "Combinatorial continuous non-stationary critical excitation in MDOF structures using multi-peak envelope functions", Earthq. Struct., 7(6), 895-908. http://dx.doi.org/10.12989/eas.2014.7.6.895.
- Iyengar, R.N. (1972), "Worst inputs and a bound on the highest peak statistics of a class of non-linear systems", J. Sound Vib., 25(1), 29-37. https://doi.org/10.1016/0022-460X(72)90593-7
- Khatibinia, M., Gholami, H. and Kamgar, R. (2018), "Optimal design of tuned mass dampers subjected to continuous stationary critical excitation", Int. J. Dyn. Cont., 6(3), 1094-1104. https://doi.org/10.1007/s40435-017-0386-7.
- Kamgar, R., Samea, P. and Khatibinia, M. (2018), "Optimizing parameters of tuned mass damper subjected to critical earthquake", Struct. Des. Tall Spec. Build., 27(7), e1460. https://doi.org/10.1002/tal.1460.
- Kamgar, R. and Rahgozar, R. (2015), "Determination of critical excitation in seismic analysis of structures", Earthq. Struct., 9(4), 875-891. http://dx.doi.org/10.12989/eas.2015.9.4.875.
- Kamgar, R., Shojaee, S. and Rahgozar, R. (2015), "Rehabilitation of tall buildings by active control system subjected to critical seismic excitation", Asian J. Civ. Eng., 16(6), 819-833.
- Kojima, K., Saotome, Y. and Takewaki, I. (2018), "Critical earthquake response of a SDOF elastic-perfectly plastic model with viscous damping under double impulse as a substitute for near-fault ground motion", JPN Arch. Rev., 1(2), 207-220. https://doi.org/10.1002/2475-8876.10019.
- Lekshmy, P.R. and Raghukanth, S.T.G. (2015), "Maximum possible ground motion for linear structures", J. Earthq. Eng., 19(6), 938-955. https://doi.org/10.1080/13632469.2015.1023472.
- Moustafa, A. (2009), "Critical earthquake load inputs for multi-degree-of-freedom inelastic structures", J. Sound Vib., 325(3), 532-544. https://doi.org/10.1016/j.jsv.2009.03.022.
- Moustafa, A. (2011), "Damage-based design earthquake loads for single-degree-of freedom inelastic structures", J. Struct. Eng., 173(3), 456-467. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000074.
- Nigdeli, S.M. and Bekdas, G. (2017), "Optimum tuned mass damper design in frequency domain for structures", KSCE J. Civ. Eng., 21(3), 912-922. https://doi.org/10.1007/s12205-016-0829-2.
- Srinivasan, M., Ellingwood, B. and Corotis, R. (1991), "Critical base excitations of structural systems", J. Eng. Mech., 117(6), 1403-1422. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:6(1403).
- Takewaki, I. (2001a), "A new method for non-stationary random critical excitation", Earthq. Eng. Struct. Dyn., 30(4), 519-535. https://doi.org/10.1002/eqe.21.
- Takewaki, I. (2001b), "Nonstationary random critical excitation for acceleration response", J. Eng. Mech., 127(6), 544-556. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(544).
- Takewaki, I. (2002), "Critical excitation for elastic-plastic structures via statistical equivalent linearization", Prob. Eng. Mech., 17(1), 73-84. https://doi.org/10.1016/S0266-8920(01)00030-3.
- Takewaki, I. (2004), "Bound of earthquake input energy", J. Struct. Eng., 130(9), 1289-1297. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1289).
- Takewaki, I. (2006), "Probabilistic critical excitation method for earthquake energy input rate", J. Eng. Mech., 132(9), 990-1000. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(990).
- Tamura, G., Kojima, K. and Takewaki, I., (2019), "Critical response of elastic-plastic SDOF systems with nonlinear viscous damping under simulated earthquake ground motions", Heliyon, 5(2), e01221. https://doi.org/10.1016/j.heliyon.2019.e01221.
- Travasarou, T., Bray, J.D. and Abrahamson, N.A., (2003), "Empirical attenuation relationship for Arias intensity", Earthq. Eng. Struct. Dyn., 32(7), 1133-1155. https://doi.org/10.1002/eqe.270.
- Zhai, C.H. and Xie, L.L. (2007), "A new approach of selecting real input ground motions for seismic design: The most unfavourable real seismic design ground motions", Earthq. Eng. Struct. Dyn., 36(8), 1009-1027. https://doi.org/10.1002/eqe.669.
Cited by
- Optimum location for the belt truss system for minimum roof displacement of steel buildings subjected to critical excitation vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.463
- SSI effects on the redistribution of seismic forces in one-storey R/C buildings vol.20, pp.3, 2021, https://doi.org/10.12989/eas.2021.20.3.261