참고문헌
- ASCE/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and other Structures, American Society of Civil Engineers; Reston, Virginia, U.S.A.
- Bosco, M., Marino, E.M. and Rossi, P.P. (2015), "Design of steel frames equipped with BRBs in the framework of Eurocode 8", J. Constr. Steel Res., 113, 43-57. https://doi.org/10.1016/j.jcsr.2015.05.016.
- Caprili, S., Mussini, N. and Salvatore, W. (2018), "Experimental and numerical assessment of EBF structures with shear links", Steel Compos. Struct., 28(2), 123-138. http://doi.org/10.12989/scs.2018.28.2.123.
- Carr, A.J. (2007), RUAUMOKO 2D: User Manual for the 2-Dimensional Version, University of Canterbury, Canterbury, New Zealand.
- Eskandari, R. and Vafaei, D. (2015), "Effects of near-fault records characteristics on seismic performance of eccentrically braced frames", Struct. Eng. Mech., 56(5), 855-870. http://doi.org/10.12989/sem.2015.56.5.855
- Eurocode 3 (2005), Design of Steel Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
- Eurocode 8 (2009), Design of Structures for Earthquake Resistance. Part 1.1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
- Gleize, J. and Koboevic, S. (2014), "Study of global seismic response of eccentrically braced frames with long links", Proceedings of the 9th International Conference on Structural Dynamics (EYRODYN), Porto, Portugal, June.
- Hatzigeorgiou, G.D. (2010), "Damping modification factors for SDOF systems subjected to near-fault, far-fault and artificial earthquakes", Earthq. Eng. Struct. Dyn., 39(11), 1239-1258. https://doi.org/10.1002/eqe.991.
- Hsiao, P.C., Lehman, D.E. and Roeder, C.W. (2012), "Improved analytical model for special concentrically braced frames", J. Constr. Steel Res., 73, 80-94. https://doi.org/10.1016/j.jcsr.2012.01.010.
- Kalapodis, N.A. (2017), "Seismic design of steel plane braced frames with the use of three new methods", Ph.D. Dissertation, University of Patras, Patras, Greece.
- Kalapodis, N.A. and Papagiannopoulos, G.A. (2020), "Seismic design of plane steel braced frames using equivalent modal damping ratios", Soil Dyn. Earthq. Eng., 129, 105947. https://doi.org/10.1016/j.soildyn.2019.105947.
- Kalapodis, N.A., Papagiannopoulos, G.A. and Beskos, D.E. (2018), "Modal strength reduction factors for seismic design of plane steel braced frames", J. Constr. Steel Res., 147, 549-563. https://doi.org/10.1016/j.jcsr.2018.05.004.
- Karavasilis, T.L., Bazeos, N. and Beskos, D.E. (2006), "A hybrid force/displacement seismic design method for plane steel frames", Proceedings of the 5th International Conference on Behavior of Steel Structures in Seismic Areas (STESSA), Yokohama, Japan, October.
- Kazemzadeh Azad, S. and Topkaya, C. (2017), "A review of research on steel eccentrically braced frames", J. Constr. Steel Res., 128, 53-73. https://doi.org/10.1016/j.jcsr.2016.07.032.
- Lee, C.H., Jeon, S.W., Kim, J.H. and Uang, C.M. (2005), "Effects of panel zone strength and beam web connection method on seismic performance of reduced beam section steel moment connections", J. Struct. Eng., 131(12), 1854-1865. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1854).
- Li, S., Tian, J.B. and Liu, Y.H. (2017), "Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode", Earthq. Struct., 13(5), 443-454. http://doi.org/10.12989/eas.2017.13.5.443.
- Loulelis, D.G., Papagiannopoulos, G.A. and Beskos, D.E. (2018), "Modal strength reduction factors for seismic design of steel moment resisting frames", Eng. Struct., 154(1), 23-37. https://doi.org/10.1016/j.engstruct.2017.10.071.
- MATLAB (2015), Matlab Documentation; MathWorks Inc., Massachusetts, U.S.A. https://www.mathworks.com.
- Muho, E.V., Papagiannopoulos, G.A. and Beskos, D.E. (2019a), "A seismic design method for reinforced concrete moment resisting frames using modal strength reduction factors", Bull. Earthq. Eng., 17(1), 337-390. https://doi.org/10.1007/s10518-018-0436-3.
- Muho, E.V., Papagiannopoulos, G.A. and Beskos, D.E. (2019b), "Deformation dependent equivalent modal damping ratios for the performance-based seismic design of plane R/C structures", Soil Dyn. Earthq. Eng., 129. https://doi.org/10.1016/j.soildyn.2018.08.026
- Okazaki, T., Lignos, D.G., Hikino, T. and Kajiwara, K. (2013), "Dynamic response of a chevron concentrically braced frame", J. Struct. Eng., 139(4), 515-525. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000679.
- Papagiannopoulos, G.A. (2018), "Jacobsen's equivalent damping concept revisited", Soil Dyn. Earthq. Eng., 115, 82-89. https://doi.org/10.1016/j.soildyn.2018.08.001.
- Papagiannopoulos, G.A. and Beskos, D.E. (2010), "Towards a seismic design method for plane steel frames using equivalent modal damping ratios", Soil Dyn. Earthq. Eng., 30(10), 1106-1118. https://doi.org/10.1016/j.soildyn.2010.04.021.
- Papagiannopoulos, G.A. and Beskos, D.E. (2011), "Modal strength reduction factors for seismic design of plane steel frames", Earthq. Struct., 2(1), 65-88. http://doi.org/10.12989/eas.2011.2.1.065.
- PEER (2013), https://ngawest2.berkeley.edu.
- Pian, C., Qian, J., Muho, E.V. and Beskos, D.E. (2019), "A hybrid force/displacement seismic design method for reinforced concrete moment resisting frames", Soil Dyn. Earthq. Eng., 129. https://doi.org/10.1016/j.soildyn.2018.09.002.
- Priestley, M.J.N., Calvi, G.M. and Kowalsky, M.J. (2007), Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, Italy.
- Qi, Y., Li, W. and Feng, W. (2017), "Seismic collapse probability of eccentrically braced steel frames", Steel Compos. Struct., 24(1), 37-52. http://doi.org/10.12989/scs.2017.24.1.037.
- Salawdeh, S. and Goggins, J. (2011), "Direct displacement based seismic design for single storey steel concentrically braced frames", Earthq. Struct., 10(5), 1125-1141. http://dx.doi.org/10.12989/eas.2016.10.5.1125.
- SAP2000 (2016), Analysis Reference Manual, Computers and Structures Inc., Berkeley. https://www.csiamerica.com/
- SEAOC (1999), Recommended Lateral force Requirements and Commentary, Structural Engineers Association of California; Sacramento, California, U.S.A.
- Skalomenos, K.A., Hatzigeorgiou, G.D. and Beskos, D.E. (2015), "Application of the hybrid force/displacement (HFD) seismic design method to composite steel/concrete plane frames", J. Constr. Steel Res., 115, 179-190. https://doi.org/10.1016/j.jcsr.2015.08.007.
- Tzimas, A.S., Karavasilis, T.L., Bazeos, N. and Beskos, D.E. (2013), "A hybrid force/displacement seismic design method for steel building frames", Eng. Struct., 56, 1452-1463. https://doi.org/10.1016/j.engstruct.2013.07.014.