DOI QR코드

DOI QR Code

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud (Industrial Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad)
  • Received : 2019.06.12
  • Accepted : 2019.10.10
  • Published : 2020.02.10

Abstract

This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

Keywords

Acknowledgement

Supported by : Ferdowsi University of Mashhad

References

  1. Abbas, I.A. (2014), "A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity", Appl. Math. Comput., 245, 108-115. https://doi.org/10.1016/j.amc.2014.07.059.
  2. Abbondanza, D., Battista, D., Morabito, F., Pallante, C., Barretta, R., Luciano, R., Marotti de Sciarra, F. and Ruta, G. (2016), "Linear dynamic response of nanobeams accounting for higher gradient effects", J. Appl. Comput. Mech., 2(2), 54-64. https://doi.org/10.22055/JACM.2016.12330.
  3. Abouelregal, A.E. and Zenkour, A.M. (2018), "Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads", Microsyst. Technol., 24(2), 1189-1199. https://doi.org/ 10.1007/s00542-017-3485-7.
  4. Abouelregal, A.E. and Zenkour, A.M. (2017), "Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat", Smart Struct. Syst., 20(4), 451-460. https://doi.org/10.12989/sss.2017.20.4.451.
  5. Aifantis, E.C. (1999), "Gradient deformation models at nano, micro, and macro scales", Journal of Engineering Materials and Technology, 121(2), 189-202. https://doi.org/ 10.1115/1.2812366.
  6. Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked micro beams" Struct. Eng. Mech., 59: 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  7. Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  8. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", J. Struct. Stability Dynam., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  9. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", International Journal of Applied Mechanics, 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  10. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  11. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  12. Akbas, S.D. (2018c), "Bending of a Cracked Functionally Graded Nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  13. Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.
  14. Ansari, R., Rouhi, S. and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Comput. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/JCAMECH.2017.243530.195.
  15. Arash, B., Jiang J.W. and Rabczuk, t. (2015), "A review on nanomechanical resonators and their applications in sensors and molecular transportation", Appl. Phys. Rev., 2, 021301. https://doi.org/10.1063/1.4916728.
  16. Ardito, R., Comi, C., Corigliano, A. and Frangi, A. (2008a), "Solid damping in micro electro mechanical systems", Meccanica, 43(4), 419-428. https://doi.org/10.1007/s11012-007-9105-3.
  17. Ardito, R., Comi, C., Corigliano, A. and Frangi, A. (2008b), "Errata-corrige to "Solid damping in micro electro mechanical systems".", Meccanica, 43, 557. https://doi.org/ 10.1007/s11012-008-9137-3.
  18. Balta, F. and Suhubi, E.S. (1977), "Theory of nonlocal generalised thermoelasticity", J. Eng. Sci., 15(9-10), 579-588. https://doi.org/ 10.1016/0020-7225(77)90054-4.
  19. Barretta, R., Canadija, M., Luciano, R. and Marotti de Sciarra, F. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012.
  20. Bensaid, I., Abdelmadjid, C., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13-26. https://doi.org/10.12989/amr.2017.6.1.013.
  21. Bensaid, I. and Guenanou, A. (2017), "Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities", Adv. Mater. Res., 6(1), 45-63. https://doi.org/10.12989/amr.2017.6.1.045.
  22. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018a), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  23. Bensaid, I., Bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018b), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., 27(6), 369-380. https://doi.org/10.12989/was.2018.27.6.369.
  24. Bensaid, I. and Bekhadda, A. (2018), "Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams", Adv. Mater. Res., 7(1), 363-378. https://doi.org/10.12989/amr.2018.7.1.001.
  25. Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircraft Spacecraft Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
  26. Berezovski, A., Engelbrecht, J. and Van, P. (2014), "Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature", Arch. Appl. Mech., 84(9-11), 1249-1261. https://doi.org/10.1007/s00419-014-0858-6.
  27. Bostani, M. and Karami Mohammadi, A. (2018), "Thermoelastic damping in microbeam resonators based on modified strain gradient elasticity and generalized thermoelasticity theories", Acta Mechanica, 229(1), 173-192. https://doi.org/10.1007/s00707-017-1950-0.
  28. Bougoffa, L., Al-Jeaid, H.K. and Khanfer, A. (2010), "On the solutions of a boundary value problem of linear thermoelasticity system with nonlocal conditions", Appl. Math. Comput., 217(8), 4227-4233. https://doi.org/10.1016/j.amc.2010.10.037.
  29. Clark, H.R. and Guardia R.R. (2016), "On a nonlinear thermoelastic system with nonlocal coefficients", J. Math. Anal. Appl., 433(1), 338-354. https://doi.org/10.1016/j.jmaa.2015.07.018
  30. Dhaliwal, R.S. and Jun, W. (1994), "Some theorems in generalized nonlocal thermoelasticity", J. Eng. Sci., 32(3), 473-479. https://doi.org/10.1016/0020-7225(94)90135-X.
  31. Dong, Y., Cao, B.Y. and Guo, Z.Y. (2014), "Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics", Physica E, 56, 256-262. https://doi.org/10.1016/j.physe.2013.10.006.
  32. Ebrahimi, F., and Haghi, P. (2017), "Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory", Acta Mechanica Solida Sinica, 30(6), 647-657. https://doi.org/10.1016/j.camss.2017.09.007.
  33. Ebrahimi, F., Mahmoodi, F., and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279.
  34. El-Nabulsi, R.A. (2018), "Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes", Continuum Mech. Thermodynam., 30(4), 889-915. https://doi.org/10.1007/s00161-018-0666-2.
  35. Elsibai, K.A. and Youssef, H.M. (2011), "State-Space Approach to Vibration of Gold Nano-Beam Induced by Ramp Type Heating without Energy Dissipation in Femtoseconds Scale", J. Thermal Stress., 34(3), 244-263. https://doi.org/ 10.1080/01495739.2010.545737.
  36. Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
  37. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
  38. Ezzat, M.A., and El-Bary, A.A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
  39. Fabrizio, M., Lazzari, B., and Nibbi, R. (2011), "Thermodynamics of non-local materials: extra fluxes and internal powers", Continuum Mech. Thermodynam., 23, 509. https://doi.org/10.1007/s00161-011-0193-x.
  40. Fang, Y., Yan, B., and Tee, K.F. (2017), "Probabilistic reliability of micro-resonators with thermoelastic coupling", Earthq. Struct., 12(2), 213-221. https://doi.org/10.12989/eas.2017.12.2.000.
  41. Guyer, R.A., and Krumhansl, J.A. (1966), "Solution of the linearized phonon boltzmann equation", Phys. Rev., 148(2), 765-778. https://doi.org/10.1103/PhysRev.148.766.
  42. Green, A.E., and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689.
  43. Green, A.E., and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Thermal Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.
  44. Green, A.E., and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
  45. Hetnarski, R.B., and Eslami, M.R. (2009), Thermal Stresses - Advanced Theory and Applications, Springer, Dordrecht, Austria.
  46. Hosseini, M., Shishesaz, M., and Hadi, A. (2019), "Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness", Thin Wall. Struct., 134, 508-523. https://doi.org/10.1016/j.tws.2018.10.030.
  47. Hosseini, S.M., Sladek, J., and Sladek, V. (2011), "Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder", Eng. Anal. Boundary Elements, 35(6), 827-835. https://doi.org/10.1016/j.enganabound.2011.02.001.
  48. Hosseini, S.M. (2014a), "Application of a hybrid meshless technique for natural frequencies analysis in functionally graded thick hollow cylinder subjected to suddenly thermal loading", Appl. Math. Model., 38(2), 425-436. https://doi.org/10.1016/j.apm.2013.06.034.
  49. Hosseini, S.M (2014b), "Application of a hybrid mesh-free method for shock-induced thermoelastic wave propagation analysis in a layered functionally graded thick hollow cylinder with nonlinear grading patterns", Eng. Anal. Boundary Elements, 43, 56-66. https://doi.org/10.1016/j.enganabound.2014.03.007.
  50. Hosseini, S.M. (2018), "Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory", Appl. Math. Model., 57, 21-36. https://doi.org/10.1016/j.apm.2017.12.034.
  51. Hosseini, S.M., and Zhang, C. (2018), "Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder using meshless GFD method: A modified micromechanical model", Eng. Anal. Boundary Elements, 88, 80-92. https://doi.org/10.1016/j.enganabound.2017.12.010.
  52. Ignaczak, J., and Ostoja-Starzewski, M. (2010), Thermoelasticity with Finite Wave Speeds, Oxford University Press, Uk.
  53. Inan, E., & Eringen, A.C. (1991), "Nonlocal theory of wave propagation in thermoelastic plates", J. Eng. Sci., 29(7), 831-843. https://doi.org/10.1016/0020-7225(91)90005-N.
  54. Jou D., Casas-Vazquez J., and Lebon G. (2010a), Extended Irreversible Thermodynamics, Springer Netherlands, Netherlands.
  55. Jou D., Lebon G., and Criado-Sancho, M. (2010b), "Variational principles for thermal transport in nanosystems with heat slip flow", Phys. Rev. E, 82: 031128. https://doi.org/10.1103/PhysRevE.82.031128.
  56. Kiani, K. (2015), "Free vibrations of elastically embedded stocky single-walled carbon nanotubes acted upon by a longitudinally varying magnetic field", Meccanica, 50, 3041-3067. https://doi.org/10.1007/s11012-015-0184-2.
  57. Kumar, R., and Devi, S. (2017), "Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse", Comput. Concrete, 19(6), 701-710. https://doi.org/10.12989/cac.2017.19.6.701.
  58. Li, D., and He, T. (2018), "Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties", Helion, 4(10), e00860. https://doi.org/10.1016/j.heliyon.2018.e00860.
  59. Lord, H.W., and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  60. Ma, Y. (2012), "Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer", Appl. Phys. Lett., 101(21), 211905. https://doi.org/10.1063/1.4767337.
  61. Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274.
  62. Meric, R.A. (1988), "Sensitivity analysis of functionals with respect to shape for dynamically loaded nonlocal thermoelastic solids", J. Eng. Sci., 26(7), 703-711. https://doi.org/10.1016/0020-7225(88)90089-4.
  63. Moradi-Dastjerdi, R., and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.
  64. Olofinkua, J. (2018), "On The Effect of Nanofluid Flow and Heat Transfer with Injection through an Expanding or Contracting Porous Channel", J. Comput. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264.
  65. Polizzotto, C. (2003), "Unified thermodynamic framework for nonlocal/gradient continuum theories", European J. Mech. A/Solids, 22(5), 651-668. https://doi.org/10.1016/S0997-7538(03)00075-5.
  66. Polizzotto, C. (2014), "Stress gradient versus strain gradient constitutive models within elasticity", J. Solids Struct., 51(9), 1809-1818. https://doi.org/10.1016/j.ijsolstr.2014.01.021.
  67. Rana, G.C., Chand, R., Sharma, V. and Sharda A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Comput. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256.
  68. Rezazadeh, G., Sheikhlou, M., and Shabani, R. (2015), "Analysis of bias DC voltage effect on thermoelastic damping ratio in short nano-beam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model", Meccanica, 50(12), 2963-2976. https://doi.org/10.1007/s11012-015-0171-7.
  69. Sobolev, S.L. (1994), "Equations of transfer in non-local media", J. Heat Mass Transfer, 37(14), 2175-2182. https://doi.org/10.1016/0017-9310(94)90319-0.
  70. Tan, Z.-Q., and Chen, Y.-C. (2019), "Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory", Compos. Part B Eng., 161, 183-189. https://doi.org/10.1016/j.compositesb.2018.10.067.
  71. Tzou, D.Y. (2015), Macro-to Micro-scale Heat Transfer: The Lagging Behavior, John Wiley and Sons Ltd, United Kingdom.
  72. Tzou, D.Y., and Guo, Z.Y. (2010), "Nonlocal behavior in thermal lagging", J. Thermal Sci., 49(7), 1133-1137. https://doi.org/10.1016/j.ijthermalsci.2010.01.022.
  73. Yang, F., Chong, A.C.M., Lam, D.C.C., and Tong, P., (2002), "Couple stress based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  74. Yu, Y.J., Tian, X.-G., and Liu, X.-R. (2015), "Size-dependent generalized thermoelasticity using Eringen's nonlocal model", European J. Mech. A/Solids, 51, 96-106. https://doi.org/10.1016/j.euromechsol.2014.12.005.
  75. Yu, Y.J., Tian, X.-G., and Xiong Q.-L. (2016), "Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity", European J. Mech. A/Solids, 60, 238-253. https://doi.org/10.1016/j.euromechsol.2016.08.004.
  76. Yu, Y.J., Tian, X.-G., and Liu, J. (2017), "Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes' damping model", Acta Mechanica, 228(4), 1287-1302. https://doi.org/10.1007/s00707-016-1769-0.
  77. Zakeri, M., Attarnejad, R. and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Comput. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97.
  78. Zenkour, A., Abouelregal, A., Alnefaie, K., Abu-Hamdeh, N., and Aifantisb, E. (2014), "A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating", Appl. Math. Comput., 248, 169-183. https://doi.org/10.1016/j.amc.2014.09.075.
  79. Zenkour, A.M., and Abouelregal, A.E. (2014), "Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model", Acta Mechanica, 225(12), 2407-2415. https://doi.org/10.1007/s00707-014-1146-9.
  80. Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H., Aljinaidi, A.A., and Aifantis, E.C. (2015), "State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation", J. Mech. Sci. Technol., 29(7), 2921-2931. https://doi.org/10.1007/s12206-015-0623-y.
  81. Zenkour, A.M., and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
  82. Zenkour, A.M. (2017), "Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions", Microsyst. Technol., 23(1), 55-65. https://doi.org/10.1007/s00542-015-2703-4.
  83. Zenkour A.M. (2018), "A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates", Compos. Struct., 185, 821-833. https://doi.org/10.1016/j.compstruct.2017.10.085.
  84. Zenkour, A. and Abouelregal, A. (2019), "Thermoelastic Vibration of Temperature-Dependent Nanobeams Due to Rectified Sine Wave Heating-A State Space Approach". J. Appl. Comput. Mech., 5(2), 299-310. https://doi.org/10.22055/JACM.2018.26311.1323.
  85. Zhang, H., Kim, T., Choi, G., and Cho, H.H. (2016), "Thermoelastic damping in micro- and nanomechanical beam resonators considering size effects", J. Heat Mass Transfer, 103, 783-790. https://doi.org/ 10.1016/j.ijheatmasstransfer.2016.07.044.

Cited by

  1. Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model vol.76, pp.5, 2020, https://doi.org/10.12989/sem.2020.76.5.579
  2. Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space vol.77, pp.4, 2020, https://doi.org/10.12989/sem.2021.77.4.473