Acknowledgement
Supported by : Ferdowsi University of Mashhad
References
- Abbas, I.A. (2014), "A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity", Appl. Math. Comput., 245, 108-115. https://doi.org/10.1016/j.amc.2014.07.059.
- Abbondanza, D., Battista, D., Morabito, F., Pallante, C., Barretta, R., Luciano, R., Marotti de Sciarra, F. and Ruta, G. (2016), "Linear dynamic response of nanobeams accounting for higher gradient effects", J. Appl. Comput. Mech., 2(2), 54-64. https://doi.org/10.22055/JACM.2016.12330.
- Abouelregal, A.E. and Zenkour, A.M. (2018), "Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads", Microsyst. Technol., 24(2), 1189-1199. https://doi.org/ 10.1007/s00542-017-3485-7.
- Abouelregal, A.E. and Zenkour, A.M. (2017), "Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat", Smart Struct. Syst., 20(4), 451-460. https://doi.org/10.12989/sss.2017.20.4.451.
- Aifantis, E.C. (1999), "Gradient deformation models at nano, micro, and macro scales", Journal of Engineering Materials and Technology, 121(2), 189-202. https://doi.org/ 10.1115/1.2812366.
- Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked micro beams" Struct. Eng. Mech., 59: 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", J. Struct. Stability Dynam., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", International Journal of Applied Mechanics, 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018c), "Bending of a Cracked Functionally Graded Nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.
- Ansari, R., Rouhi, S. and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Comput. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/JCAMECH.2017.243530.195.
- Arash, B., Jiang J.W. and Rabczuk, t. (2015), "A review on nanomechanical resonators and their applications in sensors and molecular transportation", Appl. Phys. Rev., 2, 021301. https://doi.org/10.1063/1.4916728.
- Ardito, R., Comi, C., Corigliano, A. and Frangi, A. (2008a), "Solid damping in micro electro mechanical systems", Meccanica, 43(4), 419-428. https://doi.org/10.1007/s11012-007-9105-3.
- Ardito, R., Comi, C., Corigliano, A. and Frangi, A. (2008b), "Errata-corrige to "Solid damping in micro electro mechanical systems".", Meccanica, 43, 557. https://doi.org/ 10.1007/s11012-008-9137-3.
- Balta, F. and Suhubi, E.S. (1977), "Theory of nonlocal generalised thermoelasticity", J. Eng. Sci., 15(9-10), 579-588. https://doi.org/ 10.1016/0020-7225(77)90054-4.
- Barretta, R., Canadija, M., Luciano, R. and Marotti de Sciarra, F. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012.
- Bensaid, I., Abdelmadjid, C., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13-26. https://doi.org/10.12989/amr.2017.6.1.013.
- Bensaid, I. and Guenanou, A. (2017), "Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities", Adv. Mater. Res., 6(1), 45-63. https://doi.org/10.12989/amr.2017.6.1.045.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018a), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Bensaid, I., Bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018b), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., 27(6), 369-380. https://doi.org/10.12989/was.2018.27.6.369.
- Bensaid, I. and Bekhadda, A. (2018), "Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams", Adv. Mater. Res., 7(1), 363-378. https://doi.org/10.12989/amr.2018.7.1.001.
- Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircraft Spacecraft Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
- Berezovski, A., Engelbrecht, J. and Van, P. (2014), "Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature", Arch. Appl. Mech., 84(9-11), 1249-1261. https://doi.org/10.1007/s00419-014-0858-6.
- Bostani, M. and Karami Mohammadi, A. (2018), "Thermoelastic damping in microbeam resonators based on modified strain gradient elasticity and generalized thermoelasticity theories", Acta Mechanica, 229(1), 173-192. https://doi.org/10.1007/s00707-017-1950-0.
- Bougoffa, L., Al-Jeaid, H.K. and Khanfer, A. (2010), "On the solutions of a boundary value problem of linear thermoelasticity system with nonlocal conditions", Appl. Math. Comput., 217(8), 4227-4233. https://doi.org/10.1016/j.amc.2010.10.037.
- Clark, H.R. and Guardia R.R. (2016), "On a nonlinear thermoelastic system with nonlocal coefficients", J. Math. Anal. Appl., 433(1), 338-354. https://doi.org/10.1016/j.jmaa.2015.07.018
- Dhaliwal, R.S. and Jun, W. (1994), "Some theorems in generalized nonlocal thermoelasticity", J. Eng. Sci., 32(3), 473-479. https://doi.org/10.1016/0020-7225(94)90135-X.
- Dong, Y., Cao, B.Y. and Guo, Z.Y. (2014), "Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics", Physica E, 56, 256-262. https://doi.org/10.1016/j.physe.2013.10.006.
- Ebrahimi, F., and Haghi, P. (2017), "Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory", Acta Mechanica Solida Sinica, 30(6), 647-657. https://doi.org/10.1016/j.camss.2017.09.007.
- Ebrahimi, F., Mahmoodi, F., and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279.
- El-Nabulsi, R.A. (2018), "Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes", Continuum Mech. Thermodynam., 30(4), 889-915. https://doi.org/10.1007/s00161-018-0666-2.
- Elsibai, K.A. and Youssef, H.M. (2011), "State-Space Approach to Vibration of Gold Nano-Beam Induced by Ramp Type Heating without Energy Dissipation in Femtoseconds Scale", J. Thermal Stress., 34(3), 244-263. https://doi.org/ 10.1080/01495739.2010.545737.
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
- Ezzat, M.A., and El-Bary, A.A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
- Fabrizio, M., Lazzari, B., and Nibbi, R. (2011), "Thermodynamics of non-local materials: extra fluxes and internal powers", Continuum Mech. Thermodynam., 23, 509. https://doi.org/10.1007/s00161-011-0193-x.
- Fang, Y., Yan, B., and Tee, K.F. (2017), "Probabilistic reliability of micro-resonators with thermoelastic coupling", Earthq. Struct., 12(2), 213-221. https://doi.org/10.12989/eas.2017.12.2.000.
- Guyer, R.A., and Krumhansl, J.A. (1966), "Solution of the linearized phonon boltzmann equation", Phys. Rev., 148(2), 765-778. https://doi.org/10.1103/PhysRev.148.766.
- Green, A.E., and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E., and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Thermal Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A.E., and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
- Hetnarski, R.B., and Eslami, M.R. (2009), Thermal Stresses - Advanced Theory and Applications, Springer, Dordrecht, Austria.
- Hosseini, M., Shishesaz, M., and Hadi, A. (2019), "Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness", Thin Wall. Struct., 134, 508-523. https://doi.org/10.1016/j.tws.2018.10.030.
- Hosseini, S.M., Sladek, J., and Sladek, V. (2011), "Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder", Eng. Anal. Boundary Elements, 35(6), 827-835. https://doi.org/10.1016/j.enganabound.2011.02.001.
- Hosseini, S.M. (2014a), "Application of a hybrid meshless technique for natural frequencies analysis in functionally graded thick hollow cylinder subjected to suddenly thermal loading", Appl. Math. Model., 38(2), 425-436. https://doi.org/10.1016/j.apm.2013.06.034.
- Hosseini, S.M (2014b), "Application of a hybrid mesh-free method for shock-induced thermoelastic wave propagation analysis in a layered functionally graded thick hollow cylinder with nonlinear grading patterns", Eng. Anal. Boundary Elements, 43, 56-66. https://doi.org/10.1016/j.enganabound.2014.03.007.
- Hosseini, S.M. (2018), "Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory", Appl. Math. Model., 57, 21-36. https://doi.org/10.1016/j.apm.2017.12.034.
- Hosseini, S.M., and Zhang, C. (2018), "Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder using meshless GFD method: A modified micromechanical model", Eng. Anal. Boundary Elements, 88, 80-92. https://doi.org/10.1016/j.enganabound.2017.12.010.
- Ignaczak, J., and Ostoja-Starzewski, M. (2010), Thermoelasticity with Finite Wave Speeds, Oxford University Press, Uk.
- Inan, E., & Eringen, A.C. (1991), "Nonlocal theory of wave propagation in thermoelastic plates", J. Eng. Sci., 29(7), 831-843. https://doi.org/10.1016/0020-7225(91)90005-N.
- Jou D., Casas-Vazquez J., and Lebon G. (2010a), Extended Irreversible Thermodynamics, Springer Netherlands, Netherlands.
- Jou D., Lebon G., and Criado-Sancho, M. (2010b), "Variational principles for thermal transport in nanosystems with heat slip flow", Phys. Rev. E, 82: 031128. https://doi.org/10.1103/PhysRevE.82.031128.
- Kiani, K. (2015), "Free vibrations of elastically embedded stocky single-walled carbon nanotubes acted upon by a longitudinally varying magnetic field", Meccanica, 50, 3041-3067. https://doi.org/10.1007/s11012-015-0184-2.
- Kumar, R., and Devi, S. (2017), "Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse", Comput. Concrete, 19(6), 701-710. https://doi.org/10.12989/cac.2017.19.6.701.
- Li, D., and He, T. (2018), "Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties", Helion, 4(10), e00860. https://doi.org/10.1016/j.heliyon.2018.e00860.
- Lord, H.W., and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Ma, Y. (2012), "Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer", Appl. Phys. Lett., 101(21), 211905. https://doi.org/10.1063/1.4767337.
- Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274.
- Meric, R.A. (1988), "Sensitivity analysis of functionals with respect to shape for dynamically loaded nonlocal thermoelastic solids", J. Eng. Sci., 26(7), 703-711. https://doi.org/10.1016/0020-7225(88)90089-4.
- Moradi-Dastjerdi, R., and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.
- Olofinkua, J. (2018), "On The Effect of Nanofluid Flow and Heat Transfer with Injection through an Expanding or Contracting Porous Channel", J. Comput. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264.
- Polizzotto, C. (2003), "Unified thermodynamic framework for nonlocal/gradient continuum theories", European J. Mech. A/Solids, 22(5), 651-668. https://doi.org/10.1016/S0997-7538(03)00075-5.
- Polizzotto, C. (2014), "Stress gradient versus strain gradient constitutive models within elasticity", J. Solids Struct., 51(9), 1809-1818. https://doi.org/10.1016/j.ijsolstr.2014.01.021.
- Rana, G.C., Chand, R., Sharma, V. and Sharda A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Comput. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256.
- Rezazadeh, G., Sheikhlou, M., and Shabani, R. (2015), "Analysis of bias DC voltage effect on thermoelastic damping ratio in short nano-beam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model", Meccanica, 50(12), 2963-2976. https://doi.org/10.1007/s11012-015-0171-7.
- Sobolev, S.L. (1994), "Equations of transfer in non-local media", J. Heat Mass Transfer, 37(14), 2175-2182. https://doi.org/10.1016/0017-9310(94)90319-0.
- Tan, Z.-Q., and Chen, Y.-C. (2019), "Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory", Compos. Part B Eng., 161, 183-189. https://doi.org/10.1016/j.compositesb.2018.10.067.
- Tzou, D.Y. (2015), Macro-to Micro-scale Heat Transfer: The Lagging Behavior, John Wiley and Sons Ltd, United Kingdom.
- Tzou, D.Y., and Guo, Z.Y. (2010), "Nonlocal behavior in thermal lagging", J. Thermal Sci., 49(7), 1133-1137. https://doi.org/10.1016/j.ijthermalsci.2010.01.022.
- Yang, F., Chong, A.C.M., Lam, D.C.C., and Tong, P., (2002), "Couple stress based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yu, Y.J., Tian, X.-G., and Liu, X.-R. (2015), "Size-dependent generalized thermoelasticity using Eringen's nonlocal model", European J. Mech. A/Solids, 51, 96-106. https://doi.org/10.1016/j.euromechsol.2014.12.005.
- Yu, Y.J., Tian, X.-G., and Xiong Q.-L. (2016), "Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity", European J. Mech. A/Solids, 60, 238-253. https://doi.org/10.1016/j.euromechsol.2016.08.004.
- Yu, Y.J., Tian, X.-G., and Liu, J. (2017), "Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes' damping model", Acta Mechanica, 228(4), 1287-1302. https://doi.org/10.1007/s00707-016-1769-0.
- Zakeri, M., Attarnejad, R. and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Comput. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97.
- Zenkour, A., Abouelregal, A., Alnefaie, K., Abu-Hamdeh, N., and Aifantisb, E. (2014), "A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating", Appl. Math. Comput., 248, 169-183. https://doi.org/10.1016/j.amc.2014.09.075.
- Zenkour, A.M., and Abouelregal, A.E. (2014), "Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model", Acta Mechanica, 225(12), 2407-2415. https://doi.org/10.1007/s00707-014-1146-9.
- Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H., Aljinaidi, A.A., and Aifantis, E.C. (2015), "State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation", J. Mech. Sci. Technol., 29(7), 2921-2931. https://doi.org/10.1007/s12206-015-0623-y.
- Zenkour, A.M., and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
- Zenkour, A.M. (2017), "Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions", Microsyst. Technol., 23(1), 55-65. https://doi.org/10.1007/s00542-015-2703-4.
- Zenkour A.M. (2018), "A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates", Compos. Struct., 185, 821-833. https://doi.org/10.1016/j.compstruct.2017.10.085.
- Zenkour, A. and Abouelregal, A. (2019), "Thermoelastic Vibration of Temperature-Dependent Nanobeams Due to Rectified Sine Wave Heating-A State Space Approach". J. Appl. Comput. Mech., 5(2), 299-310. https://doi.org/10.22055/JACM.2018.26311.1323.
- Zhang, H., Kim, T., Choi, G., and Cho, H.H. (2016), "Thermoelastic damping in micro- and nanomechanical beam resonators considering size effects", J. Heat Mass Transfer, 103, 783-790. https://doi.org/ 10.1016/j.ijheatmasstransfer.2016.07.044.
Cited by
- Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model vol.76, pp.5, 2020, https://doi.org/10.12989/sem.2020.76.5.579
- Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space vol.77, pp.4, 2020, https://doi.org/10.12989/sem.2021.77.4.473