DOI QR코드

DOI QR Code

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori (Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan) ;
  • Saidi, A.R. (Department of Mechanical Engineering, Shahid Bahonar University of Kerman) ;
  • Mohammadi, M. (Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan)
  • 투고 : 2019.03.03
  • 심사 : 2019.10.05
  • 발행 : 2020.02.10

초록

In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

키워드

참고문헌

  1. Askari Farsangi, M.A. and Saidi, A.R. (2012) "Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers", Smart Mater. Struct., 21, 1-15. https://doi.org/10.1088/0964-1726/21/9/094017.
  2. Batra, R.C. (2007) "Higher-order shear and normal deformable theory for functionally graded incompressible linear elastic plates", Thin-Wall. Struct., 45, 974-982. https://doi.org/10.1016/j.tws.2007.07.008.
  3. Batra, R. and Vidoli, S. (2002) "Higher order piezoelectric plate theory derived from a three-dimensional variational principle", AIAA J., 40, 91-104. https://doi.org/10.2514/2.1618.
  4. Behjat, B. and Khoshravan, M.R. (2012) "Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates", Compos. Struct., 94, 874-882. https://doi.org/10.1016/j.compstruct.2011.08.024.
  5. Behjat, B., Salehi, M., Armina, A., Sadighi, M. and Abbasi, M. (2011) "A static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading", Scientia Iranica B, 18, 986-994. https://doi.org/10.1016/j.scient.2011.07.009.
  6. Bodaghi, M. and Shakeri, M. (2012) "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94, 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
  7. Chen, W.Q. and Ding, H.J. (2002) "On free vibration of a functionally graded piezoelectric rectangular plate", Acta Mech., 153, 207-216. https://doi.org/10.1007/BF01177452.
  8. E. Mohseni, Saidi, A.R. and Mohammadi M. (2016) "Bendingstretching analysis of thick functionally graded micro-plates using higher-order shear and normal deformable plate theory", Mech. Adv. Mater. Struct., 24, 1221-1230. https://doi.org/10.1080/15376494.2016.1227503.
  9. Heyliger, P.R. and Ramirez, G. (2000) "Free vibration of laminated circular piezoelectric plates and discs", Sound Vib., 229, 935-956. https://doi.org/10.1006/jsvi.1999.2520.
  10. Huang, X., Sun, J. and Li, J. (2015) "Effect of Initial Residual Stress and Machining-Induced Residual Stress on the Deformation of Aluminium alloy Plate", J. Mech. Eng., 61, 131-137. https://doi.org/10.5545/sv-jme.2014.1897
  11. Jadhav, P. and Bajoria, K. (2013) "Stability analysis of piezoelectric FGM plate subjected to electro-mechanical loading using finite element method", Int. J. Appl. Sci. Eng., 11, 375- 391. http://dx.doi.org/10.6703%2fIJASE.2013.11(4).375.
  12. Jam, J.E. and Nia, N.G. (2012) "Dynamic analysis of FGPM annular plate based on the 3-D theory of elasticity", Int. J. Compos Mater., 2, 53-62.
  13. Lim, C.W. and He, L.H. (2001) "Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting", Int. J. Mech. Sci., 43, 2479-2492. https://doi.org/10.1016/S0020-7403(01)00059-5.
  14. Lu, P., Lee, H.P. and Lu, C. (2005) "An exact solution for functionally graded piezoelectric laminates in cylindrical bending", Int. J. Mech. Sci., 12, 437-458. https://doi.org/10.1016/j.ijmecsci.2005.01.012.
  15. Mindlin, R.D., Schaknow, A. and Deresiewicz, H. (1856) "Flexural vibration of rectangular plates", J. Appl. Mech., 23, 430-436.
  16. Mohammadi, M., Mohseni, E. and Moeinfar, M. (2019) "Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory", Appl. Math. Model., 69, 47-62. https://doi.org/10.1016/j.apm.2018.11.047.
  17. Nazari, M.B., Shariati, M., Eslami, M.R. and Hassani, B. (2011) "Computation of stress intensity factor in functionally graded plates under thermal shock", J. Mech. Eng., 57, 622-632.
  18. Reddy, J.N. (1984). "A simple higher-order theory for laminated composite plates", Appl. Mech., 45, 745-752. https://doi.org/10.1115/1.3167719.
  19. Reissner, E. (1994) "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184.
  20. Sheikholeslami, S.A. and Saidi, A.R. (2013) "Vibration analysis of functionally graded rectangular plates resting on elastic foundation sing higher-order shear and normal deformable plate theory", Compos. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016.
  21. Wang, J. and Yang, J. (2000) "Higher-order theories of piezoelectric plates and applications", Appl. Mech. Rev., 53, 87-99. https://doi.org/10.1115/1.3097341.
  22. Wattanasakulponga, N. and Chaikittiratanab, A. (2015) "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  23. Wu, X.H., Chen, C.Q., Shen, Y.P. and Tian, X.G.A. (2002) "High order theory for functionally graded piezoelectric shells", Int. J. Solids Struct., 4, 5325-5344. https://doi.org/10.1016/S0020-7683(02)00418-3.
  24. Xiang, H.J. and Shi, Z.F. (2009) "Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load", Eur. J. Mech. A Solids, 28, 338-346. https://doi.org/10.1016/j.euromechsol.2008.06.007.
  25. Zhong, Z. and Shang, E.T. (2003) "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", Int. J. Solids Struct., 40, 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9.
  26. Zhong Z. and Tao Y.U. (2006) "Vibration of simply supported functionally graded piezoelectric rectangular plate", Smart Mater. Struct., 15, 1726-1741. https://doi.org/10.1088/0964-1726/15/5/029.

피인용 문헌

  1. Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095