DOI QR코드

DOI QR Code

Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory

  • 투고 : 2019.06.30
  • 심사 : 2019.09.27
  • 발행 : 2020.02.10

초록

This work treats the axisymmetric buckling of functionally graded (FG) porous annular/circular nanoplates based on modified couple stress theory (MCST). The nanoplate is located at the elastic medium which is simulated by Kerr foundation with two spring and one shear layer. The material properties of the porous FG nanostructure are assumed to vary through the nanoplate thickness based on power-law rule. Based on two variables refined plate theory, the governing equations are derived by utilizing Hamilton's principle. Applying generalized differential quadrature method (GDQM), the buckling load of the annular/circular nanoplates is obtained for different boundary conditions. The influences of different involved parameters such as boundary conditions, Kerr medium, material length scale parameter, geometrical parameters of the nanoplate, FG power index and porosity are demonstrated on the nonlinear buckling load of the annular/circular nanoplates. The results indicate that with increasing the porosity of the nanoplate, the nonlinear buckling load is decreased. In addition, with increasing the material length scale parameter to thickness ratio, the effect of spring constant of Kerr foundation on the buckling load becomes more prominent. The present results are compared with those available in the literature to validate the accuracy and reliability. A good agreement is observed between the two sets of the results.

키워드

참고문헌

  1. Abolghasemi, S., Eipakchi, H. and Shariati, M. (2017), "An analytical solution for axisymmetric buckling of annular plates based on perturbation technique", Int. J. Mech. Sci., 123, 74-83. https://doi.org/10.1016/j.ijmecsci.2016.12.027.
  2. Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E, 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009.
  3. Barati, M.R. (2017a), "Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments", The Europ. Phys. J. Plus, 132, 434-452. https://doi.org/10.1140/epjp/i2017-11686-2.
  4. Barati, M.R. (2017b), "Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity", Eur. Phys. J. Plus, 132, 378-388. https://doi.org/10.1140/epjp/i2017-11670-x.
  5. Barati, M.R. and Shahverdi, H. (2017), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous nanoporous plates", Europ. J. Mech. / A Solids, https://doi.org/10.1016/j.euromechsol.2017.09.001.
  6. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Mathematic. Analy. ad Applicat., 34, 235-8. https://doi.org/10.1016/0022-247X(71)90110-7
  7. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12, 9-34. https://doi.org/10.12989/sss.2018.22.3.303.
  8. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Advan. Nano Res., 6, 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  9. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  10. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analy-sis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
  11. Dastjerdi, Sh., Jabbarzadeh, M. and Aliabadi, Sh. (2016), "Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler-Pasternak elastic matrix based on non-local theory of Eringen", Ain Shams Eng. J., 7, 873-884. https://doi.org/10.1016/j.asej.2015.12.013.
  12. Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", Computat. Mat. Sci., 49, 194-S198. https://doi.org/10.1016/j.commatsci.2010.04.016.
  13. Duc, N.D. and Thu, P.V. (2014), "Nonlinear stability analysis of imperfect three-phase polymer composite plates in thermal environments", Compos. Struct., 109, 130-138. https://doi.org/10.1016/j.compstruct.2013.10.050.
  14. Ebrahimi, F. and Ebrahimi Fardshad, R. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Advan. Nano Res., 6, 113-133. https://doi.org/10.12989/anr.2018.6.2.113.
  15. Farhatnia, F. and Golshah, A. (2010), "Buckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions", J. Solid Mech., 2, 156-167.
  16. Farhatnia, F., Ghanbari-Mobarakeh, M., Rasouli-Jazi, S. and Oveissi, S. (2017), "Thermal buckling analysis of functionally graded circular plate resting on the pasternak elastic foundation via the differential transform method", Facta Universit., Series: Mech. Eng., 15, 545-563. https://doi.org/10.22190/FUME170104004F.
  17. Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermo-mechanical nonlinear bending analysis of functionally graded thick circular plates resting on winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43, 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.
  18. Frikha, A., Hajlaoui, A., Walia, M. and Dammak, F. (2016), "Dynamic response of functionally graded material shells with a discrete double directors shell element", Compos. Struct., 154, 385-395. https://doi.org/10.1016/j.compstruct.2016.07.021.
  19. Frostig, Y. and Simitses, G.J. (1986), "Buckling of multi-annular plates", Compu. Brurr., 24, 443-453. https://doi.org/10.1016/0045-7949(86)90322-6.
  20. Ghiasian, S.E., Kiani, Y., Sadighi, M. and Eslami, M.R. (2014), "Thermal buckling of shear deformable temperature dependent circular/annular FGM plates", Int. J. Mech. Sci., 81, 137-148. https://doi.org/10.1016/j.ijmecsci.2014.02.007.
  21. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Advan. Nano Res., 3, 111-121. https://doi.org/10.12989/anr.2015.3.2.111.
  22. Golmakani, M.E. and Vahabi, H. (2017), "Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions", Microsyst. Technol., 23, 3613-3628. https://doi.org/10.1007/s00542-016-3210-y.
  23. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67, 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
  24. Hajmohammad, M.H., Zarei, M.Sh., Sepehr, M. and Abtahi, N. (2018), "Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM", Aerosp. Sci. Technol., 79, 679-688. https://doi.org/10.1016/j.ast.2018.05.055.
  25. Hajlaoui, A., Jarraya, A., Kallel-Kamoun, I. and Dammak, F. (2012), "Buckling analysis of a laminated composite plate with delaminations using the enhanced assumed strain solid shell element", J. Mech. Sci. Technol., 26, 3213-3221. https://doi.org/10.1007/s12206-012-0829-1.
  26. Hajlaoui, A., Walia, M., Ben Jdidia, M. and Dammak, F. (2017), "An improved enhanced solid shell element for static and buckling analysis of shell structures", Mech. Ind., 17, In press.
  27. Hajlaoui, A., Trikia, E., Frikha, A., Walia, M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", Lat. Am. J. Solids Struct., 14, 72-91. http://dx.doi.org/10.1590/1679-78253323.
  28. Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019a), "Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution", Int. J. Mech. Mater. Des., https://doi.org/10.1007/s10999-019-09465-x
  29. Hajlaoui, A., Chebbi, E. and Dammak, F. (2019a), "Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT", Thin-Walled Struct., 144, 106254. https://doi.org/10.1016/j.tws.2019.106254.
  30. Jung, W.Y., Han, S.Ch. and Park, W.T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos. Part B: Eng., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058.
  31. Kamranfard, M.R., Saidi, A.R. and Naderi, A. (2017), "Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading", Proceed. Instit. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406217716197.
  32. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30. https://doi.org/10.1142/S0217984916504212.
  33. Karimi, M. and Shahidi, A.R. (2017), "Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects", Proc. IMechE Part N: J. Nanomat., Nanoengine. Nanosyst., 231, 1534-1555. https://doi.org/10.1177/2397791417719970.
  34. Karami, B., Shahsavari, D. and Li, L. (2017), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stres., , https://doi.org/10.1080/01495739.2017.1393781.
  35. Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautic., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
  36. Khadem Moshir, S., Eipakchi, H. and Vatandoost, H. (2018), "Analytical procedure for determining natural frequencies of annular single-layered graphene sheet via nonlocal elasticity theory", J. Eng. Mech., 144, 04018086. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001515.
  37. Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Advanc. Mat. Struct., 26, 248-259. https://doi.org/10.1080/15376494.2017.1341583.
  38. Kosel, F. and Jin, Ch. (1997), "Buckling of a thin annular plate subjected to two opposite locally acting pressures and supported at two opposite points", Int. J. Mech. Sci. 39, 1325-1343. https://doi.org/10.1016/S0020-7403(97)00019-2.
  39. Koohkan, H., Kimiaeifar, A., Mansourabadi, A. and Vaghefi, R. (2010), "An analytical approach on the buckling analysis of circular, solid and annular functionally graded thin plates", J. Mech. Eng., 41, 7-14. https://doi.org/10.3329/jme.v41i1.5357.
  40. Malekzadeh, P. and Shojaee, M. (2013a), "A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Cont., 21, 2755-2772. https://doi.org/10.1177%2F1077546313516667. https://doi.org/10.1177/1077546313516667
  41. Malekzadeh, P. and Shojaee, M. (2013b), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  42. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bachir Bouiadjra, B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38, 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
  43. Najafzadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under uniform radial compression", Int. J. Mech. Sci., 44, 2479 - 2493. https://doi.org/10.1016/S0020-7403(02)00186-8.
  44. Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93, 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028.
  45. Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mech., 223, 395-413. https://doi.org/10.1007/s00707-011-0560-5.
  46. Ozakca, M., Taysi, N. and Kolcu, F. (2003), "Buckling analysis and shape optimization of elastic variable thickness circular and annular plates-I. Finite element formulation", Eng. Struct., 25, 181-192. https://doi.org/10.1016/S0141-0296(02)00133-5.
  47. Park, M. and Dong-Ho, Ch. (2018), "A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates", Appl. Math. Model., 61, 49-71. https://doi.org/10.1016/j.apm.2018.03.036.
  48. Paliwal, D.N. and Ghosh, S.K. (2014), "Stability of Orthotropic Plates on a Kerr Foundation", AIAA J., 38, 1994-1997. https://doi.org/10.2514/2.859.
  49. Poodeh, F., Farhatnia, F. and Raeesi, M. (2018), "Buckling analysis of orthotropic thin rectangular plates subjected to nonlinear in-plane distributed loads using generalized differential quadrature method", Int. J. Computat. Meth. Eng. Sci. Mech., 19, 102-116. https://doi.org/10.1080/15502287.2018.1430077.
  50. Phuc, P.M. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B, 175, 86-107. https://doi.org/10.1016/j.compositesb.2019.107086.
  51. Raju, K.K. and Rao, G.V. (1983), "Finite element analysis of post-buckling behavior of cylindrical orthotropic circular plates", Fibre Sci. Technol., 19, 145-154. https://doi.org/10.1016/0015-0568(83)90037-4.
  52. Shariat, B.A.S., Javaheri, S. and Eslami, M.R. (2005), "Buckling of imperfect functionally graded plates under in-plane compressive loading", Thin-Wall. Struct., 43, 1020-1036. https://doi.org/10.1016/j.tws.2005.01.002.
  53. Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
  54. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
  55. Shokrani, M.H., Karimi, M., Salmani Tehrani, M. and Mirdamadi, H.R. (2016), "Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method", J. Braz. Soc. Mech. Sci. Eng., 38, 2589-2606. https://doi.org/10.1007/s40430-015-0370-0.
  56. Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
  57. Tan, P., Nguyen-Thanh, N.and Zhou, K. (2017), "Extended isogeometric analysis based on Bezier extraction for an FGM plate by using the two-variable refined plate theory", Theoretic. Appl. Fract. Mech., 89, 127-138. https://doi.org/10.1016/j.tafmec.2017.02.002.
  58. Xue, Y., Jin, G., Ding, H. and Chen, M. (2018), "Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach", Compos. Struct., 192, 193-205. https://doi.org/10.1016/j.compstruct.2018.02.076.
  59. Wang, C.M., Xiang, Y., Kitipornchai, S. and Liew, K.M. (1993), "Axisymmetric buckling of circular Mindlin plates with ring supports", J. Struct. Eng., 119, 782-793. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:3(782).

피인용 문헌

  1. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129