References
- Abolghasemi, S., Eipakchi, H. and Shariati, M. (2017), "An analytical solution for axisymmetric buckling of annular plates based on perturbation technique", Int. J. Mech. Sci., 123, 74-83. https://doi.org/10.1016/j.ijmecsci.2016.12.027.
- Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E, 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009.
- Barati, M.R. (2017a), "Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments", The Europ. Phys. J. Plus, 132, 434-452. https://doi.org/10.1140/epjp/i2017-11686-2.
- Barati, M.R. (2017b), "Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity", Eur. Phys. J. Plus, 132, 378-388. https://doi.org/10.1140/epjp/i2017-11670-x.
- Barati, M.R. and Shahverdi, H. (2017), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous nanoporous plates", Europ. J. Mech. / A Solids, https://doi.org/10.1016/j.euromechsol.2017.09.001.
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Mathematic. Analy. ad Applicat., 34, 235-8. https://doi.org/10.1016/0022-247X(71)90110-7
- Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12, 9-34. https://doi.org/10.12989/sss.2018.22.3.303.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Advan. Nano Res., 6, 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analy-sis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
- Dastjerdi, Sh., Jabbarzadeh, M. and Aliabadi, Sh. (2016), "Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler-Pasternak elastic matrix based on non-local theory of Eringen", Ain Shams Eng. J., 7, 873-884. https://doi.org/10.1016/j.asej.2015.12.013.
- Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", Computat. Mat. Sci., 49, 194-S198. https://doi.org/10.1016/j.commatsci.2010.04.016.
- Duc, N.D. and Thu, P.V. (2014), "Nonlinear stability analysis of imperfect three-phase polymer composite plates in thermal environments", Compos. Struct., 109, 130-138. https://doi.org/10.1016/j.compstruct.2013.10.050.
- Ebrahimi, F. and Ebrahimi Fardshad, R. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Advan. Nano Res., 6, 113-133. https://doi.org/10.12989/anr.2018.6.2.113.
- Farhatnia, F. and Golshah, A. (2010), "Buckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions", J. Solid Mech., 2, 156-167.
- Farhatnia, F., Ghanbari-Mobarakeh, M., Rasouli-Jazi, S. and Oveissi, S. (2017), "Thermal buckling analysis of functionally graded circular plate resting on the pasternak elastic foundation via the differential transform method", Facta Universit., Series: Mech. Eng., 15, 545-563. https://doi.org/10.22190/FUME170104004F.
- Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermo-mechanical nonlinear bending analysis of functionally graded thick circular plates resting on winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43, 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.
- Frikha, A., Hajlaoui, A., Walia, M. and Dammak, F. (2016), "Dynamic response of functionally graded material shells with a discrete double directors shell element", Compos. Struct., 154, 385-395. https://doi.org/10.1016/j.compstruct.2016.07.021.
- Frostig, Y. and Simitses, G.J. (1986), "Buckling of multi-annular plates", Compu. Brurr., 24, 443-453. https://doi.org/10.1016/0045-7949(86)90322-6.
- Ghiasian, S.E., Kiani, Y., Sadighi, M. and Eslami, M.R. (2014), "Thermal buckling of shear deformable temperature dependent circular/annular FGM plates", Int. J. Mech. Sci., 81, 137-148. https://doi.org/10.1016/j.ijmecsci.2014.02.007.
- Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Advan. Nano Res., 3, 111-121. https://doi.org/10.12989/anr.2015.3.2.111.
- Golmakani, M.E. and Vahabi, H. (2017), "Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions", Microsyst. Technol., 23, 3613-3628. https://doi.org/10.1007/s00542-016-3210-y.
- Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67, 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
- Hajmohammad, M.H., Zarei, M.Sh., Sepehr, M. and Abtahi, N. (2018), "Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM", Aerosp. Sci. Technol., 79, 679-688. https://doi.org/10.1016/j.ast.2018.05.055.
- Hajlaoui, A., Jarraya, A., Kallel-Kamoun, I. and Dammak, F. (2012), "Buckling analysis of a laminated composite plate with delaminations using the enhanced assumed strain solid shell element", J. Mech. Sci. Technol., 26, 3213-3221. https://doi.org/10.1007/s12206-012-0829-1.
- Hajlaoui, A., Walia, M., Ben Jdidia, M. and Dammak, F. (2017), "An improved enhanced solid shell element for static and buckling analysis of shell structures", Mech. Ind., 17, In press.
- Hajlaoui, A., Trikia, E., Frikha, A., Walia, M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", Lat. Am. J. Solids Struct., 14, 72-91. http://dx.doi.org/10.1590/1679-78253323.
- Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019a), "Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution", Int. J. Mech. Mater. Des., https://doi.org/10.1007/s10999-019-09465-x
- Hajlaoui, A., Chebbi, E. and Dammak, F. (2019a), "Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT", Thin-Walled Struct., 144, 106254. https://doi.org/10.1016/j.tws.2019.106254.
- Jung, W.Y., Han, S.Ch. and Park, W.T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos. Part B: Eng., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058.
- Kamranfard, M.R., Saidi, A.R. and Naderi, A. (2017), "Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading", Proceed. Instit. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406217716197.
- Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30. https://doi.org/10.1142/S0217984916504212.
- Karimi, M. and Shahidi, A.R. (2017), "Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects", Proc. IMechE Part N: J. Nanomat., Nanoengine. Nanosyst., 231, 1534-1555. https://doi.org/10.1177/2397791417719970.
- Karami, B., Shahsavari, D. and Li, L. (2017), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stres., , https://doi.org/10.1080/01495739.2017.1393781.
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautic., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
- Khadem Moshir, S., Eipakchi, H. and Vatandoost, H. (2018), "Analytical procedure for determining natural frequencies of annular single-layered graphene sheet via nonlocal elasticity theory", J. Eng. Mech., 144, 04018086. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001515.
- Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Advanc. Mat. Struct., 26, 248-259. https://doi.org/10.1080/15376494.2017.1341583.
- Kosel, F. and Jin, Ch. (1997), "Buckling of a thin annular plate subjected to two opposite locally acting pressures and supported at two opposite points", Int. J. Mech. Sci. 39, 1325-1343. https://doi.org/10.1016/S0020-7403(97)00019-2.
- Koohkan, H., Kimiaeifar, A., Mansourabadi, A. and Vaghefi, R. (2010), "An analytical approach on the buckling analysis of circular, solid and annular functionally graded thin plates", J. Mech. Eng., 41, 7-14. https://doi.org/10.3329/jme.v41i1.5357.
- Malekzadeh, P. and Shojaee, M. (2013a), "A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Cont., 21, 2755-2772. https://doi.org/10.1177%2F1077546313516667. https://doi.org/10.1177/1077546313516667
- Malekzadeh, P. and Shojaee, M. (2013b), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bachir Bouiadjra, B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38, 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
- Najafzadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under uniform radial compression", Int. J. Mech. Sci., 44, 2479 - 2493. https://doi.org/10.1016/S0020-7403(02)00186-8.
- Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93, 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028.
- Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mech., 223, 395-413. https://doi.org/10.1007/s00707-011-0560-5.
- Ozakca, M., Taysi, N. and Kolcu, F. (2003), "Buckling analysis and shape optimization of elastic variable thickness circular and annular plates-I. Finite element formulation", Eng. Struct., 25, 181-192. https://doi.org/10.1016/S0141-0296(02)00133-5.
- Park, M. and Dong-Ho, Ch. (2018), "A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates", Appl. Math. Model., 61, 49-71. https://doi.org/10.1016/j.apm.2018.03.036.
- Paliwal, D.N. and Ghosh, S.K. (2014), "Stability of Orthotropic Plates on a Kerr Foundation", AIAA J., 38, 1994-1997. https://doi.org/10.2514/2.859.
- Poodeh, F., Farhatnia, F. and Raeesi, M. (2018), "Buckling analysis of orthotropic thin rectangular plates subjected to nonlinear in-plane distributed loads using generalized differential quadrature method", Int. J. Computat. Meth. Eng. Sci. Mech., 19, 102-116. https://doi.org/10.1080/15502287.2018.1430077.
- Phuc, P.M. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B, 175, 86-107. https://doi.org/10.1016/j.compositesb.2019.107086.
- Raju, K.K. and Rao, G.V. (1983), "Finite element analysis of post-buckling behavior of cylindrical orthotropic circular plates", Fibre Sci. Technol., 19, 145-154. https://doi.org/10.1016/0015-0568(83)90037-4.
- Shariat, B.A.S., Javaheri, S. and Eslami, M.R. (2005), "Buckling of imperfect functionally graded plates under in-plane compressive loading", Thin-Wall. Struct., 43, 1020-1036. https://doi.org/10.1016/j.tws.2005.01.002.
- Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
- Shokrani, M.H., Karimi, M., Salmani Tehrani, M. and Mirdamadi, H.R. (2016), "Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method", J. Braz. Soc. Mech. Sci. Eng., 38, 2589-2606. https://doi.org/10.1007/s40430-015-0370-0.
- Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
- Tan, P., Nguyen-Thanh, N.and Zhou, K. (2017), "Extended isogeometric analysis based on Bezier extraction for an FGM plate by using the two-variable refined plate theory", Theoretic. Appl. Fract. Mech., 89, 127-138. https://doi.org/10.1016/j.tafmec.2017.02.002.
- Xue, Y., Jin, G., Ding, H. and Chen, M. (2018), "Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach", Compos. Struct., 192, 193-205. https://doi.org/10.1016/j.compstruct.2018.02.076.
- Wang, C.M., Xiang, Y., Kitipornchai, S. and Liew, K.M. (1993), "Axisymmetric buckling of circular Mindlin plates with ring supports", J. Struct. Eng., 119, 782-793. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:3(782).
Cited by
- Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129