참고문헌
- Abdalla, H.M. and Karihaloo, B.L. (2003), "Determination of size-independent specific fracture energy of concrete from three point-bend and wedge splitting tests", Mag. Concrete Res., 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133.
- Akcay, B., Sengul, C. and ali Mehmet, T. (2016), "Fracture behavior and pore structure of concrete with metakaolin", Adv. Concrete Constr., 4(2), 71-88. https://doi.org/10.12989/acc.2016.4.2.071.
- Alyhya, W.S., Dhaheer, M.A., Al-Rubaye, M.M and Karihaloo, B.L. (2016), "Influence of mix composition and strength on the fracture properties of self-compacting concrete", Constr. Build. Mater., 110, 312-322. https://doi.org/10.1016/j.conbuildmat.2016.02.037.
- Amparano, F.E., Xi, Y. and Roh, Y.S. (2000), "Experimental study on the effect of aggregate content on fracture behavior of concrete", Eng. Fract. Mech., 67, 65-84. https://doi.org/10.1016/S0013-7944(00)00036-9.
- ASTM (2017) ASTM C494: Standard Specification for Chemical Admixtures for Concrete, ASTM, West Conshohocken, PA, USA.
- Beygi, Morteza H.A., Kazemi, M.T., Nikbin, I.M., Amiri, J.V., Rabbanifar, S. and Rahmani, E. (2014), "The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete", Cement Concrete Res., 66, 75-90. https://doi.org/10.1016/j.cemconres.2014.06.008.
- Bideci, A., Ozturk, H., Bideci, O.S. and Emiroglu, M. (2017), "Fracture energy and mechanical characteristics of self-compacting concretes including waste bladder tyre", Constr. Build. Mater., 149, 669-678. https://doi.org/10.1016/j.conbuildmat.2017.05.191.
- Bretschneider, N., Slowik, V., Villmann, B. and Mechtcherine, V. (2011), "Boundary effect on the softening curve of concrete", Eng. Fract. Mech., 78(17), 2896-2906. https://doi.org/10.1016/j.engfracmech.2011.08.006.
- Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35 (1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N.
- Chiranjeevi Reddy, K. and Subramaniam, K.V. (2017), "Experimental investigation of crack propagation and post-cracking behaviour in macrosynthetic fibre reinforced concrete", Mag. Concrete Res., 69(9), 467-478. https://doi.org/10.1680/jmacr.16.00396.
- Cifuentes, H. and Karihaloo, B.L. (2013), "Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests", Constr. Build. Mater., 48, 548-553. https://doi.org/10.1016/j.conbuildmat.2013.07.062.
- Cifuentes, H., Alcalde, M. and Medina, F. (2013), "Measuring the size‐independent fracture energy of concrete", Strain, 49(1), 54-59. https://doi.org/10.1111/str.12012.
- Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103.
- EFNARC (2005), The European Guidelines for Self-Compacting Concrete: Specification, Production and Use, The European Guidelines for Self Compacting Concrete.
- Ghasemi, M., Ghasemi, M.R. and Mousavi, S.R. (2018), "Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters", Constr. Build. Mater., 162, 674-682. https://doi.org/10.1016/j.conbuildmat.2017.11.141.
- Giaccio, G. and Zerbino, R. (1998), "Failure mechanism of concrete: combined effects of coarse aggregates and strength level", Adv. Cement Bas. Mater., 7(2), 41-48. https://doi.org/10.1016/S1065-7355(97)00014-X.
- Giaccio, G., Rocco, C. and Zerbino, R. (1993), "The fracture energy (GF) of high-strength concretes", Mater. Struct., 26(7), 381-386. https://doi.org/10.1007/BF02472938.
- Gonzalez, D.C., Minguez, J., Vicente, M.A., Cambronero, F. and Aragon, G. (2018), "Study of the effect of the fibers' orientation on the post-cracking behavior of steel fiber reinforced concrete from wedge-splitting tests and computed tomography scanning", Constr. Build. Mater., 192, 110-122. https://doi.org/10.1016/j.conbuildmat.2018.10.104.
- Guan, J.F., Hu, X.Z., Xie, C.P., Li, Q.B. and Wu, Z.M. (2018), "Wedge-splitting tests for tensile strength and fracture toughness of concrete", Theo. Appl. Fract. Mech., 93(2), 263-275. https://doi.org/10.1016/j.tafmec.2017.09.006.
- Hu, X.Z. and Wittmann, F.H. (1992), "Fracture energy and fracture process zone", Mater. Struct., 25(6), 319-326. https://doi.org/10.1007/BF02472590.
- Ince, R. and Çetin, S.Y. (2018), "Effect of grading type of aggregate on fracture parameters of concrete", Mag. Concrete Res., 71(16), 860-868. https://doi.org/10.1680/jmacr.18.00095.
- IS: 12269-2013, Specifications for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India.
- IS: 3812-2013, Pulverized Fuel Ash- Specification, Bureau of Indian Standards, New Delhi, India.
- IS: 383-2016, Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 516-2013, Indian Standard Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 5816-2013, Splitting Tensile Strength of Concrete - Method of Test, Bureau of Indian Standards, New Delhi, India.
- Jin, S., Gruber, D. and Harmuth, H. (2014), "Determination of Young's modulus, fracture energy and tensile strength of refractories by inverse estimation of a wedge splitting procedure", Eng. Fract. Mech., 116, 228-236. https://doi.org/10.1016/j.engfracmech.2013.11.010.
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011.
- Khalilpour, S., BaniAsad, E. and Dehestani, M. (2019), "A review on concrete fracture energy and effective parameters", Cement Concrete Res., 120, 294-321. https://doi.org/10.1016/j.cemconres.2019.03.013.
- Kim, J.K. and Kim, Y.Y. (1999), "Fatigue crack growth of high-strength concrete in wedge-splitting test", Cement Concrete Res., 29(5), 705-712. https://doi.org/10.1016/S0008-8846(99)00025-3.
- Korte, S., Boel, V., De Corte, W. and De Schutter, G., (2014), "Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests", Constr. Build. Mater., 57, 1-8. https://doi.org/10.1016/j.conbuildmat.2014.01.090.
- Kumar, C.N.S., Krishna, P.V.V.S.S.R. and Kumar, D.R. (2017), "Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete", Adv. Concrete Constr., 5(6), 613-624. https://doi.org/10.12989/acc.2017.5.6.613.
- Linsbauer, H.N. and Tschegg, E.K. (1986), "Fracture energy determination of concrete with cube-shaped specimens", Zement Beton, 31, 38-40.
- Lofgren, I., Stang, H. and Olesen, J. F. (2008), "The WST method, a fracture mechanics test method for FRC", Mater. Struct., 41(1), 197-211. https://doi.org/10.1617/s11527-007-9231-3.
- Nikbin, I.M., Beygi, M.H.A., Kazemi, M.T., Amiri, J.V., Rahmani, E., Rabbanifar, S. and Eslami, M. (2014), "Effect of coarse aggregate volume on fracture behavior of self-compacting concrete", Constr. Build. Mater., 52, 137-145. https://doi.org/10.1016/j.conbuildmat.2013.11.041.
- NT Build 511 (2005), North Test BUILD 511 - Wedge Splitting Test Method (WST): Fracture Testing of Fiber-Reinforced Concrete (Mode I), Nord, METHOD, Oslo, Norway, Nordic Innovation Centre, 04032, 1-6.
- Okamura, H. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. https://doi.org/10.3151/jact.1.5.
- Ostergaard, L. and Olesen, J.F. (2004), "Comparative study of fracture mechanical test methods for concrete", FraMCos-5, Vail, USA, 455-462.
- Rama, J.S., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Murthy, A.R. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. https://doi.org/10.12989/sem.2017.64.1.059.
- Recommendations, R.D. (1985), "50-FMC committee fracture mechanics of concrete", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Shah, S.P. (1997), "An overview of the fracture mechanics of concrete", Cement Concrete Agg., 19(2), 79-86. https://doi.org/10.1520/CCA10319J.
- Shaowei, H., Aiqinga, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337.
- Siregar, A.P.N., Rafiq, M.I. and Mulheron, M. (2017), "Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete", Constr. Build. Mater., 150, 252-259. https://doi.org/10.1016/j.conbuildmat.2017.05.142.
- Sitek, M., Adamczewski, G., Szyszko, M., Migacz, B., Tutka, P. and Natorff, M. (2014), "Numerical simulations of a wedge splitting test for high-strength concrete", Procedia Eng., 91, 99-104. https://doi.org/10.1016/j.proeng.2014.12.021.
- Skarzynski, L. and Tejchman, J. (2016), "Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography", Strain-An Int. J. Exper. Mech., 52(1), 26-45. https://doi.org/10.1111/str.12168.
- Skocek, J. and Stang, H. (2008), "Inverse analysis of the wedge-splitting test", Eng. Fract. Mech., 75(10), 3173-3188. https://doi.org/10.1016/j.engfracmech.2007.12.003.
- Tasdemir, M.A. and Karihaloo, B.L. (2001), "Effect of aggregate volume fraction on the fracture parameters of concrete: a meso-mechanical approach", Mag. Concrete Res., 53(6), 405-415. https://doi.org/10.1680/macr.2001.53.6.405.
- Vydra, V., Trtik, K. and Vodak, F. (2012), "Size independent fracture energy of concrete", Constr. Build. Mater., 26(1), 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034.
- Xiao, J., Schneider, H., Donnecke, C. and Konig, G. (2004), "Wedge splitting test on fracture behaviour of ultra high strength concrete", Constr. Build. Mater., 18(6), 359-365. https://doi.org/10.1016/j.conbuildmat.2004.04.016.
- Zarrin, O. and Khoshnoud, H.R. (2016), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133.
- Zhang, J., Leung, C.K.Y. and Xu, S. (2010), "Evaluation of fracture parameters of concrete from bending test using inverse analysis approach", Mater. Struct., 43(6), 857-874. https://doi.org/10.1617/s11527-009-9552-5.
- Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
피인용 문헌
- Influence of the Steel Fiber Content on the Flexural Fatigue Behavior of Recycled Aggregate Concrete vol.2020, 2020, https://doi.org/10.1155/2020/8839271
- Long-term monitoring of a hybrid SFRC slab on grade using recycled tyre steel fibres vol.10, pp.6, 2020, https://doi.org/10.12989/acc.2020.10.6.547
- Combining internal and external curing to improve quality of self-compacting concrete with consideration of climate effects vol.12, pp.2, 2021, https://doi.org/10.12989/acc.2021.12.2.085
- An Experimental Study of Shear Resistance for Multisize Polypropylene Fiber Concrete Beams vol.15, pp.1, 2020, https://doi.org/10.1186/s40069-021-00492-7