References
- Alonso, C. andrade, C., Castellote, M. and Castro, P. (2000), "Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar", Cement Concrete Res., 30(7), 1047-1055. https://doi.org/10.1016/S0008-8846(00)00265-9.
- Baji, H., Ronagh, H.R. and Melchers, R.E. (2016), "Reliability of ductility requirements in concrete design codes", Struct. Saf., 62, 76-87. https://doi.org/10.1016/j.strusafe.2016.06.005.
- Bazant, Z.P. (1979), "Physical model for steel corrosion in concrete sea structures-theory", ASCE J. Struct. Div., 105(6), 1137-1153. https://doi.org/10.1061/JSDEAG.0005168
- Cady, P.D. and Weyers, R.E. (1983), "Chloride penetration and the deterioration of concrete bridge decks", Cement Concrete Aggr., 5(2), 81-87. https://doi.org/10.1520/CCA10258J.
- Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30(3), 227-238. ttps://doi.org/10.1016/j.cemconcomp.2006.10.007.
- Choi, H.H. and Seo, J. (2009), "Safety assessment using imprecise reliability for corrosion‐damaged structures", Comput. Aid. Civil Infra. Eng., 24(4), 293-301. https://doi.org/10.1111/j.1467-8667.2009.00597.x.
- Dai, L., Wang, L., Bian, H., Zhang, J., Zhang, X. and Ma, Y., (2019), "Flexural capacity prediction of corroded prestressed concrete beams incorporating bond degradation", J. Aerosp. Eng., 32(4), 04019027. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001022.
- De Vera, G., Climent, M. A., Viqueira, E., Antón, C. and Andrade, C. (2007), "A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II: The instantaneous plane source diffusion case with chloride binding consideration", Cement Concrete Res., 37(5), 714-724. https://doi.org/10.1016/j.cemconres.2007.01.008.
- Djeddi, L., Khelif, R., Benmedakhene, S. and Favergeon, J. (2013), "Reliability of acoustic emission as a technique to detect corrosion and stress corrosion cracking on prestressing steel strands", Int. J. Electrochem. Sci., 8(1), 8356-8370.
- DuraCrete (2000), "Statistical quantification of the variables in the limit state functions", The European Union-Brite EuRam III-Contract BRPR-CT95-0132-Project BE95-1347/R9.
- Enright, M.P. and Frangopol, D.M. (1998), "Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion", Eng. Struct., 20(11), 960-971. https://doi.org/10.1016/S0141-0296(97)00190-9.
- Fick, A. (1855), "On liquid diffusion, Poggendorffs Annalen", 94: 59, reprinted in (1995) "On liquid diffusion", J. Mem. Sci., 100, 33-38. https://doi.org/10.1016/0376-7388(94)00230-v.
- Hobbs, D.W. and Matthews, J.D. (1998), Minimum Requirements for Concrete to Resist Deterioration Due to Chloride Induced Corrosion, in: Minimum Requirements for Durable Concrete, D.W. Hobbs Edition, British Cement Association, Crowthorne, UK.
- Kioumarsi, M., Markeset, G. and Hooshmandi, S. (2017), "Effect of pit distance on failure probability of a corroded RC beam", Proced. Eng., 171, 526-533. https://doi.org/10.1016/j.proeng.2017.01.365
- Koleva, D.A., Hu, J., Fraaij, A.L.A., Stroeven, P., Boshkov, N. and De Wit, J.H.W. (2006), "Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack", Corrs. Sci., 48(12), 4001-4019. https://doi.org/10.1016/j.corsci.2006.03.003.
- Lemaire, M. (2013), Structural Reliability, John Wiley & Sons.
- Li, B., Cai, L. and Zhu, W. (2018), "Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory", Int. J. Civil Eng., 16(9), 1017-1027. https://doi.org/10.1007/s40999-017-0251-2.
- Liu, K.C., Yang, C.H., Liu, T.I., Chiu, L.Y. and Liu, G. (2017), "On-stream inspection for pitting corrosion defect of pressure vessels for intelligent and safe manufacturing", Int. J. Adv. Manu. Tech., 91(5-8), 1957-1966. https://doi.org/10.1007/s00170-016-9888-2.
- Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95(6), 675-681.
- Ma, Y., Wang, G., Guo, Z., Wang, L., Jiang, T. and Zhang, J. (2019), "Critical region method-based fatigue life prediction of notched steel wires of long-span bridges", Constr. Build. Mater., 225, 601-610. https://doi.org/10.1016/j.conbuildmat.2019.07.157.
- McGee, R. (1999), "Modelling of durability performance of Tasmanian bridges", ICASP8 Appl. Stat. Proba. Civil Eng., 1, 297-306.
- Morinaga, S. (1988), "Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel", Report No. 23, Institute of Technology, Shimizu Corporation, Japan.
- Neville, A. (1995), "Chloride attack of reinforced concrete: an overview", Mater. Struct., 28(2), 63. https://doi.org/10.1007/BF02473172.
- Nogueira, C.G., Leonel, E.D. and Coda, H.B. (2012), "Probabilistic failure modelling of reinforced concrete structures subjected to chloride penetration", Int. J. Adv. Struct. Eng., 4(1), 10. https://doi.org/10.1186/2008-6695-4-10.
- Olawale, O.A., Xiao-Bao, Z.G. and Ji, Y. (2019), "Numerical analysis of concrete degradation due to chloride-induced steel corrosion", Adv. Concrete Constr., 7(4), 203-210. https://doi.org/10.12989/acc.2019.7.4.203.
- PHIMECA-reliability-based design and analysis (2002), User's manual, version 1.6, Aubiere, France. http://www.phimeca.com/
- Portland Cement Association (PCA) (2002), Types and Causes of Concrete Ddeterioration, Serial No. 2617, PCA, Illinois, USA.
- Prachasaree, W., Limkatanyu, S., Wangapisit, O. and Kraidam, S. (2018), "Field investigation of service performance of concrete bridges exposed to tropical marine environment", Int. J. Civil Eng., 16(12), 1757-1769. https://doi.org/10.1007/s40999-017-0250-3.
- Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", Mater. J., 90(5), 441-451.
- Samson, E. and Marchand, J. (2007), "Modeling the effect of temperature on ionic transport in cementitious materials", Cement Concrete Res., 37(3), 455-468. https://doi.org/10.1016/j.cemconres.2006.11.008.
- Sarveswaran, V., Smith, J.W. and Blockley, D.I. (1998), "Reliability of corrosion-damaged steel structures using interval probability theory", Struct. Saf., 20(3), 237-255. https://doi.org/10.1016/S0167-4730(98)00009-5.
- Shetty, A., Venkataramana, K. and Narayan, K.B. (2015), "Experimental and numerical investigation on flexural bond strength behavior of corroded NBS RC beam", Int. J. Adv. Struct. Eng., 7(3), 223-231. https://doi.org/10.1007/s40091-015-0093-6.
- Tuutti, K. (1982), Corrosion of Steel in Concrete, Cement-och betonginst, Stockholm, Holland.
- Vagelis, G.P. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration", Adv. Concrete Constr., 1(3), 201-213. http://dx.doi.org/10.12989/acc2013.1.3.201.
- Val, D.V. and Trapper, P.A. (2008), "Probabilistic evaluation of initiation time of chloride-induced corrosion", Reliab. Eng. Syst. Saf., 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010.
- Vedalakshmi, R., Rajagopal, K. and Palaniswamy, N. (2011), "Durability performance of rebar embedded in chloride admixed blended cement concretes", Corrs. Eng. Sci. Tech., 46(3), 256-270. https://doi.org/10.1179/174327809X409204.
- Vu, K.A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22(4), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7.
- Wang, L., Dai, L., Bian, H., Ma, Y. and Zhang, J. (2019), "Concrete cracking prediction under combined prestress and strand corrosion", Struct. Inf. Eng., 15(3), 285-295. https://doi.org/10.1080/15732479.2018.1550519.
- Wang, L., Yi, J., Zhang, J., Jiang, Y. and Zhang, X. (2017), "Effect of corrosion-induced crack on the bond between strand and concrete", Constr. Build. Mater., 153, 598-606. https://doi.org/10.1016/j.conbuildmat.2017.07.113.
- Wu, L., Li, W. and Yu, X. (2017), "Time-dependent chloride penetration in concrete in marine environments", Constr. Build. Mater., 152, 406-413. https://doi.org/10.1016/j.conbuildmat.2017.07.016.
- Yang, D.H., Yi, T.H. and Li, H.N. (2017), "A performance-based design method for chloride-induced cover cracking of RC structures", Comput. Concrete, 5(2), 117-143. http://dx.doi.org/10.12989/acc.2017.5.2.117.
- Zhang, H. (2018), "Durability reliability analysis for corroding concrete structures under uncertainty", Mech. Syst. Signal. Pr., 101, 26-37. https://doi.org/10.1016/j.ymssp.2017.08.027.
- Zhang, H., Mullen, R.L. and Muhanna, R.L. (2010), "Interval Monte Carlo methods for structural reliability", Struct. Saf., 32(3), 183-190. https://doi.org/10.1016/j.strusafe.2010.01.001.
- Zhang, M.Q., Beer, M., Quek, S.T. and Choo, Y.S. (2010), "Comparison of uncertainty models in reliability analysis of offshore structures under marine corrosion", Struct. Saf., 32(6), 425-432. https://doi.org/10.1016/j.strusafe.2010.04.003.
- Zhu, W. and François, R. (2013), "Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam", Adv Concrete Constr., 1(2), 121-136. http://dx.doi.org/10.12989/acc.2013.1.2.121.