References
- ASTM D3682-01(2006), Standard Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes, American Society for Testing and Materials. USA.
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of Australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7.
- Borges, P.H.R., Lourenço, T.M. de F., Foureaux, A.F.S. and Pacheco, L.S. (2014), "Estudo comparative da analise de ciclo de vida de concretos geopolimericos e de concretos a base de cimento Portland composto (CP II)", Ambient. Construido, 14(2), 153-168. https://doi.org/10.1590/s1678- 86212014000200011.
- Cordeiro, G.C., Toledo Filho, R.D. and De Moraes Rego Fairbairn, E. (2009), "Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete", Mater. Struct. Constr., 42(7), 983-992. https://doi.org/10.1617/s11527-008-9437-z.
- Davidovits, J. (1991), "Geopolymer-Inorganic polymeric new materials". J. Therm. Anal., 37(8), 1633-1656. https://doi.org/10.1007/BF01912193.
- Davidovits, J. (2005), "Geopolymer chemistry and sustainable development. The poly(sialate) trminology: a very useful and simple model for the promotion and understanding of green-chemistry", Proceedings of Geopolymer, Green Chemistry and Sustainable Development Solutions, Institut Geopolymere, Saint-Quentin, 9-15.
- de Sensale, G.R. (2006), "Strength development of concrete with rice-husk ash", Cement Concrete Compos., 28(2), 158-160. https://doi.org/10.1016/j.cemconcomp.2005.09.005.
-
De Vargas, A.S., Dal Molin, D.C.C., Vilela, A.C.F., Silva, F.J. Da, Pavao, B. and Veit, H. (2011), "The effects of
$Na_2O/SiO_2$ molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers". Cement Concrete Compos., 33(6), 653-660. https://doi.org/10.1016/j.cemconcomp.2011.03.006. - Deja, J. (2002), "Carbonation aspects of alkali activated slag mortars and concretes", Silicates Industriels, 67(1), 37-42.
- Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and Van Deventer, J.S.J. (2007), "Geopolymer technology: The current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
- Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and Van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A Physicochem. Eng. Asp., 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
- Fan, F. (2015), "Mechanical and thermal properties of fly ash-based geopolymer cement". M.Sc. Thesis, Agricultural and Mechanical College, Louisiana State Univetsity.
- Ganesan, N., Abraham, R. and Deepa Raj, S. (2015), "Durability characteristics of steel fibre reinforced geopolymer concrete", Constr. Build. Mater., 93, 471-476. https://doi.org/10.1016/j.conbuildmat.2015.06.014.
- Ganesan, N., Abraham, R., Deepa Raj, S. and Sasi, D. (2014), "Stress-strain behaviour of confined Geopolymer concrete", Constr. Build. Mater., 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092.
- Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete". Adv Concete Constr., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305.
- Geraldo, R.H., Fernandes, L.F.R. and Camarini, G. (2017), "Water treatment sludge and rice husk ash to sustainable geopolymer production", J. Clean. Prod., 149, 146-155. https://doi.org/10.1016/j.jclepro.2017.02.076.
- Hart, R., Lowe, J., Southam, D., Perera, D. and Wal, P. (2006), "Aluminosilicate inorganic polymers from waste material, In Green Processing 2006", 3rd Int. Conf. on the Sustainable Processing of Minerals, Carlton, VIC, Australia.
- IS 1199:1959, Methods of Sampling and Analysis of Concrete, Bureau of Indian standards, New Delhi, India.
- IS 12089:19887, Specification for Granulated Slag for the Manufacture of Portland Slag Cement, Bureau of Indian standards, New Delhi, India.
- IS 2386: 1963 (Part-I), Methods of Test for Aggregates for Concrete, Bureau of Indian standards, New Delhi, India.
- IS 2770:1967 (Part I), Methods of Testing Bond in Reinforced Concrete, Bureau of Indian standards, New Delhi, India.
- IS 3812:2003, Specification for Fly Ash for Use as Pozzolana and Admixture, Bureau of Indian Standards, New Delhi, India.
- IS 516: 1959, Method of Test for Strength of Concrete, Reaffirmed 2004, Bureau of Indian standards, New Delhi, India.
- IS 5816:1999, Indian Standard Method of Test for Splitting Tensile Strength of Concrete, New Delhi, India.
- Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A.N. and Mirza, J. (2012), "Reduction in environmental problems using rice-husk ash in concrete", Constr. Build. Mater., 30, 360-365. https://doi.org/10.1016/j.conbuildmat.2011.11.028.
- Kusbiantoro, A., Nuruddin, M.F., Shafiq, N. and Qazi, S.A. (2012), "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete", Constr. Build. Mater., 36, 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064.
- Law, D.W., Adam, A.A., Molyneaux, T.K., Patnaikuni, I. and Wardhono, A. (2014), "Long term durability properties of class F fly ash geopolymer concrete", Mater. Struct. Constr., 48(3), 721-731. https://doi.org/10.1617/s11527-014-0268-9.
- Liu, M.Y.J., Chua, C.P., Alengaram, U.J. and Jumaat, M.Z. (2014), "Utilization of palm oil fuel ash as binder in lightweight oil palm shell geopolymer concrete", Adv. Mater. Sci. Eng., 2014, Article ID 610274, 6. https://doi.org/10.1155/2014/610274.
- Lloyd, R.R., Provis, J.L. and Van Deventer, J.S.J. (2010), "Pore solution composition and alkali diffusion in inorganic polymer cement", Cement Concrete Res., 40(9), 1386-1392. https://doi.org/10.1016/j.cemconres.2010.04.008.
- Matthes, W., Vollpracht, A., Villagrán, Y., Kamali-Bernard, S., Hooton, D., Gruyaert, E. and De Belie, N. (2018), "Ground granulated blast-furnace slag", RILEM State-of-the-Art Reports, 25, 1-53. https://doi.org/10.1007/978-3-319-70606-1_1.
- Mehta, P.K. (1977), "Properties of blended cements made from rice husk ash", J. Am. Concrete Inst., 74(9), 440-452. https://doi.org/10.14359/11022.
- Mehta, P.K. (1994), "Highly durable cement products containing siliceous ashes", United States Patent Number 5, 346, 548. USA, 15.
- Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Procedia Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077.
- Nazari, A., Bagheri, A. and Riahi, S. (2011), "Properties of geopolymer with seeded fly ash and rice husk bark ash", Mater. Sci. Eng. A, 528(24), 7395-7401. https://doi.org/10.1016/j.msea.2011.06.027.
- Patel, Y.J. and Shah, N. (2018), "Development of self-compacting geopolymer concrete as a sustainable construction material", Sustain. Envir. Res., 28(6), 412-421. https://doi.org/10.1016/j.serj.2018.08.004.
- Prabu, B., Kumutha, R. and Vijai, K. (2017), "Effect of fibers on the mechanical properties of fly ash and GGBS based geopolymer concrete under different curing conditions", Ind. J. Eng. Mater. S., 24(1), 5-12.
- Puertas, F., Fernandez-Jimenez, A. and Blanco-Varela, M.T. (2004), "Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicatehydrate", Cement Concrete Res., 34(1), 139-148. https://doi.org/10.1016/S0008-8846(03)00254-0.
- Ramasamy, V. (2012), "Compressive strength and durability properties of Rice Husk Ash concrete", KSCE J. Civil Eng., 16(1), 93-102. https://doi.org/10.1007/s12205-012-0779-2.
- Rice Market Monitor, Vol. XII-Issue No. 4; December 2009.
- RILEM committee 73-SBC (1988), "Final report: siliceous by-products for use in concrete". Mater. Struct. Constr., 21(121), 69-80. https://doi.org/10.1007/BF02472530.
- Shi, C., Krivenko, P.V. and Roy, D.M. (2006), Alkali Activated Cement Concretes, Taylor and Francis, Abingdon.
- Song, S. and Jennings, H.M. (1999), "Pore solution chemistry of alkali-activated ground", Cement Concrete Res., 29, 159-170. https://doi.org/10.1016/S0008-8846(98)00212-9
- Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications", Mine. Eng., 10(7), 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0.
- Venkatesan, R.P. and Pazhani, K.C. (2016), "Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash", KSCE J. Civil Eng., 20(6), 2384-2391. https://doi.org/10.1007/s12205-015-0564-0.
- Wallah, S.E. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Research Report GC 2, Faculty of Engineering, Curtin University of Technology, Western Australia.
-
Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2016), "Effect of supplementary cementitious materials on reduction of
$CO_2$ emissions from concrete", Handbook of Low Carbon Concrete, 2, 89-110. https://doi.org/10.1016/B978-0-12-804524-4.00005-1. - Zabihi, S.M., Tavakoli, H. and Mohseni, E. (2018), "Engineering and microstructural properties of fiber-reinforced rice Husk-Ash based geopolymer concrete", J. Mater. Civil Eng., 30(8), 04018183. https://doi.org/10.1061/(asce)mt.1943-5533.0002379.
- Zerbino, R., Giaccio, G., Batic, O.R. and Isaia, G.C. (2012), "Alkali-silica reaction in mortars and concretes incorporating natural rice husk ash", Constr. Build. Mater., 36, 796-806. https://doi.org/10.1016/j.conbuildmat.2012.04.049.
Cited by
- Properties and durability of concrete with olive waste ash as a partial cement replacement vol.11, pp.1, 2020, https://doi.org/10.12989/acc.2021.11.1.059
- Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.319