DOI QR코드

DOI QR Code

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong (State Key Laboratory of Green Building in Western China of Xian University of Architecture & Technology) ;
  • Shi, Qingxuan (State Key Laboratory of Green Building in Western China of Xian University of Architecture & Technology) ;
  • Zhao, Hongchao (College of Civil Engineering, Xinjiang University)
  • 투고 : 2019.07.17
  • 심사 : 2019.11.26
  • 발행 : 2020.02.25

초록

As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

키워드

참고문헌

  1. Abdel-Kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites". Adv. Concrete Constr., 2(4), 281-300. http://dx.doi.org/10.12989/acc.2014.2.4.281.
  2. Abdelkarim, O.I. and ElGawady, M. (2016), "Behavior of hollow FRP-concrete-steel columns under static cyclic axial compressive loading". Eng. Struct., 123, 77-88. https://doi.org/10.1016/j.engstruct.2016.05.031.
  3. Afifi, M., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by gfrp spirals and hoops". Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.
  4. Bouchelaghem, H., Abderrezak, B. and Scarpa, F. (2011), "Compressive behaviour of concrete cylindrical FRP-confined columns subjected to a new sequential loading technique", Compos. B Eng., 42(7), 1987-1993. https://doi.org/10.1016/j.compositesb.2011.05.045.
  5. Campione, G. and Minafò, G. (2010), "Compressive behavior of short high-strength concrete columns", Eng. Struct., 32(9), 2755-2766. https://doi.org/10.1016/j.engstruct.2010.04.045.
  6. Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).
  7. Dong, C.X., Kwan, A. and Ho, J.C.M. (2015), "Effects of confining stiffness and rupture strain on performance of FRP confined concrete", Eng. Struct., 97, 1-14. https://doi.org/10.1016/j.engstruct.2015.03.037.
  8. Elgawady, M. and Abdelkarim, O. (2014), "Behavior of hollow-core FRP-concrete-steel columns subjected to cyclic axial compression", Tech Report, Missouri University of Science and Technology, Center for Transportation Infrastructure and Safety.
  9. Esfandiari, S. and Esfandiari, J. (2017), "Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading", Adv. Concrete Constr., 4(4), 319-332. http://dx.doi.org/10.12989/acc.2017.4.4.319.
  10. Fahmy, M.F.M. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. B Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.
  11. Fanggi, B.A.L. and Ozbakkaloglu, T. (2013), "Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns", Constr. Build. Mater., 48(19), 554-565. https://doi.org/10.1016/j.conbuildmat.2013.07.029.
  12. Fanggi, B.A.L. and Ozbakkaloglu, T. (2015), "Square FRP-HSC-steel composite columns: Behavior under axial compression", Eng. Struct., 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005.
  13. Hosseinpour, F. and Abdelnaby, A.E. (2015), "Statistical evaluation of the monotonic models for FRP confined concrete prisms", Adv. Concrete Constr., 3(3), 161-185. http://dx.doi.org/10.12989/acc.2015.3.3.161.
  14. Hu, Y.M. (2011), "Behaviour and modelling of FRP-confined hollow and concrete-filled steel tubular columns", Ph.D. Dissertation, Hong Kong Polytechnic University, Hong Kong.
  15. Hu, Y.M., Yu, T. and Teng, J.G. (2016), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J. Compos. Constr., 15(5), 850-860. http://hdl.handle.net/10397/23938. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000217
  16. Huang, L., Yu, T., Zhang, S.S. and Wang, Z.Y. (2017), "FRP-confined concrete-encased cross-shaped steel columns: concept and behaviour", Eng. Struct., 152, 348-358. https://doi.org/10.1016/j.engstruct.2017.09.011.
  17. Huang, L., Zhang, S.S., Yu, T. and Wang, Z.Y. (2016), "Concrete-encased steel columns confined with large rupture strain FRP composites: axial compression tests.", Proceedings of the 24th Australian Conference on the Mechanics of Structures and Materials, Perth, Australia, December.
  18. Idris, Y. and Ozbakkaloglu, T. (2015), "Flexural behavior of FRP-HSC-steel double skin tubular beams under reversed-cyclic loading", Thin Wall. Struct., 87, 89-101. https://doi.org/10.1016/j.tws.2014.11.003.
  19. Karimi, K., Tait, M. and El-Dakhakhni, W. (2011a), "Testing and modeling of a novel FRP-encased steel-concrete composite column", Compos. Struct., 93(5), 1463-1473. https://doi.org/10.1016/j.compstruct.2010.11.017.
  20. Karimi, K., Tait, M. and El-Dakhakhni, W. (2011b), "Influence of slenderness on the behavior of a FRP-encased steel-concrete composite column", J. Compos. Constr., 16(1), 100-109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000235.
  21. Karimi, K., Tait, M. and El-Dakhakhni, W. (2011c), "Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios", Eng. Struct., 46, 526-534. https://doi.org/10.1016/j.engstruct.2012.08.016.
  22. Lam, L. and Teng, J.G. (2004), "Ultimate condition of FRP-confined concrete", Constr. Build. Mater., 17, 6-7. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
  23. Lam, L., Teng, J.G., Cheung, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
  24. Lim, J.C. and Ozbakkaloglu, T. (2015a), "Influence of concrete age on stress-strain behavior of FRP-confined normal- and high-strength concrete", Constr. Build. Mater., 82(4), 61-70. https://doi.org/10.1016/j.conbuildmat.2015.02.020.
  25. Lim, J.C. and Ozbakkaloglu, T. (2015b), "Design model for FRP-confined normal- and high-strength concrete square and rectangular columns", Mag. Concrete Res., 66(20), 1020-1035. https://doi.org/10.1680/macr.14.00059.
  26. Lo, S.H., Kwan, A., Ouyang, Y. and Ho, J.C.M. (2015), "Finite element analysis of axially loaded FRP-confined rectangular concrete columns", Eng. Struct., 100, 253-263. https://doi.org/10.1016/j.engstruct.2015.06.010.
  27. Mao, X.Y. and Xiao, Y. (2006), "Seismic behavior of confined square CFT columns", Eng. Struct., 28(10), 1378-1386. https://doi.org/10.1016/j.engstruct.2006.01.015.
  28. Ozbakkaloglu, T. (2013), "Compressive behavior of concrete-filled FRP tube columns: assessment of critical column parameters", Eng. Struct., 51, 188-199. https://doi.org/10.1016/j.engstruct.2013.01.017.
  29. Ozbakkaloglu, T. and Fanggi, B.L. (2014), "Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete", J. Compos. Constr., 18(1), 04013027. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000401.
  30. Ozbakkaloglu, T. and Idris, Y. (2014), "Seismic behavior of FRP-high-strength concrete-steel double-skin tubular columns", J. Struct. Eng., 140(6), 04014019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000981.
  31. Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model", Compos. B Eng., 55(12), 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025.
  32. Park, J.W., Hong, Y.K. and Choi, S.M. (2010), "Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads", Steel Compos. Struct., 10(2), 187-205. http://dx.doi.org/10.12989/scs.2010.10.2.187.
  33. Peng, K.D. (2017), "Compression tests on square hybird FRP-concrete-steel tubular columns with a rib-stiffened steel inner tube.", Proceedings of the 6th Asia-Pacific Conference on FRP in Structures, Singapore, Singapore, July.
  34. Piekarczyk, J., Piekarczyk, W. and Blazewicz, S. (2011), "Compression strength of concrete cylinders reinforced with carbon fiber laminate", Constr. Build. Mater., 25(5), 2365-2369. https://doi.org/10.1016/j.conbuildmat.2010.11.035.
  35. Qasrawi, Y., Heffernan, P.J. and Fam, A. (2014), "Performance of concrete-filled FRP tubes under field close-in blast loading", J. Compos. Constr., 19(4), 04014067. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000502.
  36. Realfonzo, R. and Napoli, A. (2011), "Concrete confined by FRP systems: confinement efficiency and design strength models", Compos. B Eng., 42(4), 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028.
  37. Saleem, S., Hussain, Q. and Pimanmas, A. (2017), "Compressive behavior of PET FRP-Confined circular, square, and rectangular concrete columns", J. Compos. Constr., 21(3), 04016097. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000754.
  38. Shan, J.H., Chen, R., Zhang, W.X., Xiao, Y., Yi, W.J. and Lu, F.Y. (2007), "Behavior of concrete filled tubes and confined concrete filled tubes under high speed impact", Adv. Struct. Eng., 10(2), 209-218. https://doi.org/10.1260/136943307780429725.
  39. Sumathi, A. and Arun, V.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. http://dx.doi.org/10.12989/acc.2017.5.6.625.
  40. Tamimi, A.A., Abed, F. and Al-Rahmani, A. (2014), "Effects of harsh environmental exposures on the bond capacity between concrete and GFRP reinforcing bars". Adv. Concrete Constr., 2(1), 1-11. http://dx.doi.org/10.12989/acc.2014.2.1.001.
  41. Tan, K.H., Bhowmik, T. and Balendra, T. (2013), "Confinement model for FRP-bonded capsule-shaped concrete columns", Eng. Struct., 51(2), 51-59. https://doi.org/10.1016/j.engstruct.2012.12.039.
  42. Tao, Z., Han, L.H. and Zhuang, J.P. (2007), "Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns", Adv. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814.
  43. Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
  44. Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Hybrid FRP-concrete-steel double-skin tubular columns: Stub column tests.", Proceedings of the Second International Conference on Steel & Composite Structures, Seoul, Korea, July.
  45. Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
  46. Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete", Compos. B Eng., 50(7), 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017.
  47. Wong, Y.L., Yu, T., Teng, J.G. and Dong, S.L. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. B Eng., 39(3), 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001.
  48. Wu, Y.F. and Wei, Y.Y. (2010), "Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012.
  49. Xiao, Y. (2004), "Applications of FRP composites in concrete columns", Adv. Struct. Eng., 7(4), 335-343. https://doi.org/10.1260/1369433041653552.
  50. Xiao, Y., He, W. and Choi, K.K. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng., 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488).
  51. Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression", Eng. Struct., 90, 158-171. https://doi.org/10.1016/j.engstruct.2015.02.020.
  52. Youssf, O., ElGawady, M. and Mills, J.E. (2016), "Static cyclic behaviour of FRP-confined crumb rubber concrete columns", Eng. Struct., 113, 371-387. https://doi.org/10.1016/j.engstruct.2016.01.033.
  53. Yu, T. and Teng, J.G. (2013), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression", J. Compos. Constr., 17(2), 271-279. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000331.
  54. Yu, T. Zhang. B., Cao, Y.B. and Teng, J.G. (2012), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to cyclic axial compression", Thin Wall. Struct., 61(6), 196-203. https://doi.org/10.1016/j.tws.2012.06.003.
  55. Yu, T., Chan, C., The, L. and Teng, J.G. (2017), "Hybrid FRP-concrete-steel multitube concrete columns: concept and behavior", J. Compos. Constr., 21(6), 04017044. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000826.
  56. Yu, T., Hu, Y.M. and Teng, J.G. (2014), "FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression", J. Constr. Steel Res., 94, 33-48. https://doi.org/10.1016/j.jcsr.2013.11.003.
  57. Yu, T., Hu, Y.M. and Teng, J.G. (2016a), "Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns", J. Constr. Steel Res., 124, 12-22. https://doi.org/10.1016/j.jcsr.2016.05.006.
  58. Yu, T., Lin, G. and Zhang, S.S. (2016b), "Compressive behavior of FRP-confined concrete-encased steel columns", Compos. Struct., 154, 493-506. https://doi.org/10.1016/j.compstruct.2016.07.027.
  59. Zakaib, S. and Fam, A. (2012), "Flexural performance and moment connection of concrete-filled GFRP tube-encased steel I-sections", J. Compos. Constr., 16(5), 604-613. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000288.
  60. Zhang, D.J. Wang. Y.F. and Ma, Y.S. (2010), "Compressive behaviour of FRP-confined square concrete columns after creep", Eng. Struct., 32(8), 1957-1963. https://doi.org/10.1016/j.engstruct.2010.02.023.
  61. Zhou, Y., Liu. X., Xing, F., Li, D., Wang, Y. and Sui, L. (2017), "Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete", Constr. Build. Mater., 139, 52-63. https://doi.org/10.1016/j.conbuildmat.2016.12.154.

피인용 문헌

  1. Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps vol.28, pp.2, 2020, https://doi.org/10.12989/cac.2021.28.2.137