DOI QR코드

DOI QR Code

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana (Graduate School of Environmental Engineering, Pusan National University) ;
  • Park, Nohback (Aquaculture Management Division, National Institute of Fisheries Science) ;
  • Bae, Hyokwan (Department of Civil and Environmental Engineering, Pusan National University)
  • Received : 2019.10.31
  • Accepted : 2019.12.16
  • Published : 2020.01.25

Abstract

Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Aksu, Z. and Balibek, E. (2010), "Effect of salinity on metal-complex dye biosorption by Rhizopus arrhizus", Environ. Manage., 91(7), 1546-1555. https://doi.org/10.1016/j.jenvman.2010.02.026.
  2. Alou, M.T., Rathored, J., Lagier, J.C., Khelaifia, S., Labas, N., Sokhna, C., Diallo, A., Raoul, D. and Dubourg, G. (2016), "Massilibacterium senegalense gen. nov., sp. nov., a new bacterial genus isolated from the human gut", New Microbes. New Infect., 10, 101-111. https://doi.org/10.1016/j.nmni.2016.01.010.
  3. Anah, L. and Astrini, N. (2018), "Isotherm adsorption studies of Ni (II) ion removal from aqueous solutions by modified carboxymethyl cellulose hydrogel", Earth Environ. Sci. 160(1), 012017. https://doi.org/10.1088/1755-1315/160/1/012017.
  4. APHA, AWWA, WEF (2017), Standard Methods for the Examination of Water and Wastewater, 23rd edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., U.S.A.
  5. Araujo, L.D.S., Catunda, P.F. and van Haande,l A.C. (1998), "Biological sludge stabilization Part 2: Influence of the composition of waste activated sludge on anaerobic stabilization", Water S.A., 24(3), 231-236.
  6. Bellinger, D.C. (2011), "The Protean Toxicities of Lead: New Chapters in a Familiar Story", Int. J. Environ. Res. Public Health., 8(7), 2593-2628. https://doi.org/10.3390/ijerph8072593.
  7. Black, R., Sartaj, M., Mohammadian, A. and Qiblawey, H.A.M. (2014), "Biosorption of Pb and Cu using fixed and suspended bacteria", J. Environ. Chem. Eng., 2(3), 1663-1671. https://doi.org/10.1016/j.jece.2014.05.023.
  8. Cheng, H. and Hu, Y. (2010), "Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review", Environ. Pollut., 158(5), 1134-1146. https://doi.org/10.1016/j.envpol.2009.12.028.
  9. Cui, M., Jang, M., Cho, S.H., Khim, J. and Cannon, F.S. (2012), "A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals", J. Hazard. Mater., 215, 122-128. https://doi.org/10.1016/j.jhazmat.2012.02.042.
  10. Darvishi Cheshmeh Soltani, R., Rezaee, A., Shams Khorramabadi, G. and Yaghmaeian, K. (2011), "Optimization of lead (II) biosorption in an aqueous solution using chemically modified aerobic digested sludge", Water Sci. Technol., 63(1), 129-135. https://doi.org/10.2166/wst.2011.022.
  11. Dubey, S.P. and Gopa,l K. (2009), "Application of natural adsorbent from silver impregnated Arachis hypogaea based thereon in the processes of hexavalent chromium for the purification of water", J. Hazard. Mater., 164(2-3), 968-975. https://doi.org/10.1016/j.jhazmat.2008.08.111.
  12. Feng, D., Van Deventer, J.S.J., Aldrich, C. (2004), "Removal of pollutants from acid mine wastewater using metallurgical by-product slags", Sep. Purif. Technol. 40(1), 61-67. https://doi.org/10.1016/j.seppur.2004.01.003.
  13. Fomina, M., and Gadd, G.M. (2014), "Biosorption: current perspectives on concept, definition and application", Bioresour. Technol., 160, 3-14. https://doi.org/10.1016/j.biortech.2013.12.102.
  14. Fourest, E. and Roux, J.C. (1992), "Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH", Appl. Microbiol. Biotechnol., 37(3), 399-403 https://doi.org/10.1007/BF00211001
  15. Gavrilescu, M. (2004), "Removal of heavy metal from the environment by biosorption", Eng. Life Sci., 4(3), 219-232. https://doi.org/10.1002/elsc.200420026.
  16. Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M.L. and Munoz (2007), "Biosorption of heavy metals by activated sludge and their desorption characteristics", Environ. Manage., 84(4), 419-426. https://doi.org/10.1016/j.jenvman.2006.06.015.
  17. Han, R., Zhang, J., Zou, W., Shi, J. and Liu, H. (2005), "Equilibrium biosorption isotherm for lead ion on chaff", J. Hazard. Mater., 125(1-3), 266-271. https://doi.org/10.1016/j.jhazmat.2005.05.031.
  18. He, R., Li, W., Deng, D., Chen, W., Li, H., Weic, C. and Tang, Y. (2015), "Efficient removal of lead from highly acidic wastewater by periodic ion imprinted mesoporous SBA-15 organosilica combining metal coordination and co-condensation", J. Mater. Chem. A. Mater., 3(18), 9789-9798. https://doi.org/10.1039/C5TA00820D.
  19. Jeong, Y., Hermanowicz, S.W. and Park, C. (2017), "Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater", Water. Res., 123, 86-95. https://doi.org/10.1016/j.watres.2017.06.049.
  20. Kargi, F. and Cikla, S. (2006), "Biosorption of zinc (II) ions onto powdered waste sludge (PWS): Kinetics and isotherms", Enzyme Microb. Technol., 38(5), 705-710. https://doi.org/10.1016/j.enzmictec.2005.11.005.
  21. Khan, N.A., Hasan, Z. and Jhung, S.H. (2013), "Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review", J. Hazard. Mater., 244-245, 444-456. https://doi.org/10.1016/j.jhazmat.2012.11.011.
  22. Latif Wani, A.b., Ara, A. and Usmani, J.A. (2015), "Lead toxicity: a review", Interdiscip. Toxicol., 8(2), 55-64. https://dx.doi.org/10.1515/Fintox-2015-0009.
  23. Leng, L., Nobu, M.K., Narihiro, T., Yang, P., Tan, G.Y.A. and Lee, P.H. (2019), "Shaping microbial consortia in coupling glycerol fermentation and carboxylate chain elongation for Co-production of 1, 3-propanediol and caproate: Pathways and mechanisms", Water Res., 148, 281-291. https://doi.org/10.1016/j.watres.2018.10.063.
  24. Li, W.C., Law, F.Y. and Chan, Y.H.M. (2017), "Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk", Environ. Sci. Pollut. Res., 24(10), 8903-8915. https://doi.org/10.1007/s11356-015-5081-7.
  25. Li, W.W. and Yu, H.Q. (2014), "Insight into the roles of microbial extracellular polymer substances in metal biosorption", Bioresour. Technol., 160, 15-23. https://doi.org/10.1016/j.biortech.2013.11.074.
  26. Liu, W., Zhang, J., Jin, Y., Zhao, X. and Cai, Z. (2015), "Adsorption of Pb (II), Cd (II) and Zn (II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein", J. Environ. Chem. Eng., 3(2), 1223-1232. https://doi.org/10.1016/j.jece.2015.04.009.
  27. Liu, C., Lin, H., Mi, N., Liu, F., Song, Y., Liu, Z. and Sui, J. (2018), "Adsorption mechanism of rare earth elements in Laminaria ochroleuca and Porphyra haitanensis", J. Food Biochem, 42(5), 1-6. https://doi.org/10.1111/jfbc.12533.
  28. Malik, D.S., Jain, C.K. and Yadav, A.K. (2017), "Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review", Appl. Water. Sci., 7(5), 2113-2136. https://doi.org/10.1007/s13201-016-0401-8.
  29. Mall, I.D., Srivastava, V.C. and Agarwal, N.K. (2006), "Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ashdkinetic study and equilibrium isotherm analyses", Dyes Pigm., 69(3), 210-223. https://doi.org/10.1016/j.dyepig.2005.03.013.
  30. Mathew, R., Mulani, M.S. and Majumder, D.R. (2015), "Bacterial surface layer proteins: A key to metal biosorption", Int. J. Tech. Res. App, 3(3), 177-180.
  31. Maurya, N.S., Mittal, A.K., Cornel, P. and Rother, E. (2006), "Biosorption of dyes using dead macro fungi:Effect of dye structure, ionic strength and pH", Bioresour. Technol., 97(3), 512-521. https://doi.org/10.1016/j.biortech.2005.02.045.
  32. Michalak, I., Chojnacka, K. and Witek-Krowiak, A. (2013), "State of the art for the biosorption process-A review", Appl. Biochem. Biotechnol., 170, 1389-1416. https://doi.org/10.1007/s12010-013-0269-0.
  33. Mohan, D., Pittman Jr, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gomez-Serrano, V., Gong, H. (2007), "Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production", J. Colloid Interface Sci., 310(1), 57-73. https://doi.org/10.1016/j.jcis.2007.01.020.
  34. Nadeem, R., Hanif, M.A., Shaheen, F., Perveen, S., Zafar, M.N. and Iqbal, T. (2008), "Physical and chemical modification of distillery sludge for Pb (II) biosorption", J. Hazard. Mater., 150(2), 335-342. https://doi.org/10.1016/j.jhazmat.2007.04.110.
  35. Nourbakhsh, M.N., Kilicarslan, S., Ilhan, S. and Ozdag, H. (2002), "Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp.", Chem. Eng. J., 85(2-3), 351-355. https://doi.org/10.1016/S1385-8947(01)00227-3.
  36. Colak, F., Atar, N. and Olgun, A. (2009), "Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies" Chem. Eng. J., 150(1), 122-130. https://doi.org/10.1016/j.cej.2008.12.010.
  37. Pardo, R., Herguedas, M., Barrado, E. and Vega, M. (2003), "Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida", Anal. Bioanal. Chem., 376(1), 26-32. https://doi.org/10.1007/s00216-003-1843-z.
  38. Rafatullah, M., Sulaimana, O., Hashima, R. and Ahmadb, A. (2010), "Adsorption of methylene blue on low-cost adsorbents: A review", J. Hazard. Mater., 177(1-3), 70-80. https://doi.org/10.1016/j.jhazmat.2009.12.047.
  39. Raja, C.E., Anbazhagan, K. and Selvam, G.S. (2006), "Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain", J. Microbiol. Biotechnol., 22(6), 577-585. https://doi.org/10.1007/s11274-005-9074-4.
  40. Rudakiya, D.M. and Pawar, K.S. (2013), "Evaluation of remediation in heavy metal tolerance and removal by Comamonas acidovorans MTCC 3364", IOSR. J. Environ. Sci. Toxicol. Food Technol., 5(5), 26-32. https://doi.org/10.9790/2402-0552632
  41. Ruiz-Hernando, M., Labanda, J. and Llorens, J. (2010), "Effect of ultrasonic waves on the rheological features of secondary sludge", Biochem. Eng. J., 52(2-3), 131-136. https://doi.org/10.1016/j.bej.2010.07.012.
  42. Saruchi and Kumar, V. (2016), "Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+ 2 ions from aqueous solutions by a hybrid ion-exchanger", Arabian J. Chem., 12(3), 316-329. https://doi.org/10.1016/j.arabjc.2016.11.009.
  43. Siahkamari, M., Jamalia, A., Sabzevarib, A. and Shakeria, A. (2017), "Removal of Lead(II) ions from aqueous solutions using biocompatiblepolymeric nano-adsorbents: A comparative study", Carbohydr. Polym., 157, 1180-1189. https://doi.org/10.1016/j.carbpol.2016.10.085.
  44. Sulaymon, A.H., Yousif, S.A. and Al-Faize, M.M. (2013), "Competitive biosorption of lead mercury chromium and arsenic ions onto activated sludge in batch adsorber", Aquat. Sci. Technol, 1(1), 30. http://dx.doi.org/10.5296/ast.v1i1.2536.
  45. Sutherland I.W. (2001) "The biofilm matrix-an immobilized but dynamic microbial environment", Trends Microbiol. 9: 222-227. https://doi.org/10.1016/S0966-842X(01)02012-1.
  46. Trzcinski, A.P. (2018), Advanced Biological, Physical, and Chemical Treatment of Waste Activated Sludge, Taylor & Francis (CRC Press), Boca Raton, FL, United States.
  47. Velasquez, L. and Dussan, J. (2009), "Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus", J. Hazard. Mater., 167(1-3), 713-716. https://doi.org/10.1016/j.jhazmat.2009.01.044.
  48. Volesky, B. (1994), "Advances in biosorption of metals: selection of biomass types" FEMS Microbiol. Rev., 14(4), 291-302. https://doi.org/10.1016/0168-6445(94)90046-9
  49. Zhan, X. and Zhao, X. (2003), "Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin", Water Res., 37(16), 3905-3912. https://doi.org/10.1016/S0043-1354(03)00312-9.