DOI QR코드

DOI QR Code

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung (School of Urban and Civil Engineering, Hongik University) ;
  • Zhu, Tongren (Arcadis-US, Inc.) ;
  • Jeon, Chan-Hoo (Division of Marine Science, University of Southern Mississippi, Stennis Space Center) ;
  • Lawler, Desmond F. (Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin)
  • Received : 2019.07.23
  • Accepted : 2019.11.18
  • Published : 2020.01.25

Abstract

An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

Keywords

References

  1. Adrian, Y.F., Schniedewind, U., Bradford, S.A., Simunek, J., Fernandez-Steeger, T.M. and Azzam, R. (2018), "Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material", Environ. Pollut., 236, 195-207. https://doi.org/10.1016/j.envpol.2018.01.011.
  2. Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D. and Westerhoff, P. (2010), "The release of nanosilver from consumer products used in the home", J. Environ. Quality, 39(6), 1875-1882. https://doi.org/10.2134/jeq2009.0363.
  3. Bergendahl, J. and Grasso, D. (2000), "Prediction of colloid detachment in a model porous media: hydrodynamics", Chem. Eng. Sci., 55(9), 1523-1532. https://doi.org/10.1016/S0009-2509(99)00422-4.
  4. Berglund, L. A. and Burgert, I. (2018), "Bioinspired wood nanotechnology for functional materials", Adv. Mater., 30(19), 1704285. https://doi.org/10.1002/adma.201704285.
  5. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J. and Corrie, S.R. (2016), "Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date", Pharmaceutical Res., 33(10), 2373-2387. https://doi.org/10.1007/s11095-016-1958-5.
  6. Chen, C., Waller, T. and Walker, S.L. (2017), "Visualization of transport and fate of nano and micro-scale particles in porous media: modeling coupled effects of ionic strength and size", Environ. Sci.: Nano, 4, 1025-1036. https://doi.org/10.1039/C6EN00558F.
  7. Currall, S.C. (2009), "Nanotechnology and society: New insights into public perceptions", Nature Nanotechnology, 4, 79-80. https://doi.org/10.1038/nnano.2008.423.
  8. Derjaguin, B.V. and Landau, L. (1941), "The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions", Acta Physicochim. URSS, 14, 633-652.
  9. Dong, S., Shi, X., Gao, B., Wu, J., Sun, Y., Guo, H., Xu, H. and Wu, J. (2016), "Retention and release of graphen oxide in structured heterogeneous porous media under saturated and unsaturated conditions", Environ. Sci. Technol., 50(19), 10397-10405. https://doi.org/10.1021/acs.est.6b01948.
  10. Elimelech, M., Jia, X., Gregory, J. and Williams, R. (1995), Particle Deposition and Aggregation: Measurement, Modelling and Simulation, (1st edition), Butterworth-Heinemann, Oxford, United Kingdom.
  11. Fan, W., Jiang, X.H., Yang, W., Geng, Z., Huo, M.X., Liu, Z.M. and Zhou, H. (2015), "Transport of graphen oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems", Sci. Total Environ., 511, 509-515. https://doi.org/10.1016/j.scitotenv.2014.12.099.
  12. Farokhzad, O.C. and Langer, R. (2009), "Impact of nanotechnology on drug Delivery", ACS Nano, 3(1), 16-20. https://doi.org/10.1021/nn900002m.
  13. Franchi, A. and O'Melia, C.R. (2003), "Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media", Environ. Sci. Technol., 37(6), 1122-1129. https://doi.org/10.1021/es015566h.
  14. Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., von Gleich, A. and Gottschalk, F. (2018), "Risks, release and concentrations of engineered nanomaterial in the environment", Scientific Reports, 8, 1565. https://doi.org/10.1038/s41598-018-19275-4.
  15. Godinez, I.G. and Darnault, C.J.G. (2011), "Aggregation and transport of nano-$TiO_2$ in saturated porous media: Effects of pH, surfactants and flow velocity", Water Res., 45, 839-851. https://doi.org/10.1016/j.watres.2010.09.013.
  16. Hahn, M.W. and O'Melia, C.R. (2004), "Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications", Environ. Sci. Technol., 38(1), 210-220. https://doi.org/10.1021/es030416n.
  17. He, J., Wang, D., Zhang, W. and Zhou, D. (2019), "Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry", Chemosphere, 235, 643-650. https://doi.org/10.1016/j.chemosphere.2019.06.187.
  18. Jaisi, D.P., Saleh, N.B., Blake, R.E. and Elimelech, M. (2008), "Transport of single-walled carbon nanotubes in porous media: Filtration mechanisms and reversibility", Environ. Sci. Technol., 42(22), 8317-8323. https://doi.org/10.1021/es801641v.
  19. Jun, B.M., Kim, S., Heo, J., Park, C.M., Her, N., Jang, M., Huang, L., Han, J. and Yoon, Y. (2019), "Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications", Nano Res., 12(3), 471-487. https://doi.org/10.1007/s12274-018-2225-3.
  20. Kamrani, S., Rezaei, M., Kord, M. and Baalousha, M. (2018), "Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size", Water Res., 133, 338-347. https://doi.org/10.1016/j.watres.2017.08.045.
  21. Katz, L.M., Dewan, K. and Bronaugh, R.L. (2015), "Nanotechnology in cosmetics", Food Chem. Toxicology, 85, 127-137. https://doi.org/10.1016/j.fct.2015.06.020.
  22. Kim, I., Zhu, T., Youn, S. and Lawler, D.L. (2017), "Polymer-capped nanoparticle transport in granular media filtration: Deviation from the colloidal filtration model", J. Environ. Eng., 143(7), 03117003. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001228.
  23. Kwon, H.J., Shin, K., Soh, M., Chang, H., Kim, J., Lee, J., Ko, G., Kim, B.H., Kim, D. and Hyeon, T. (2018), "Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles", Adv. Mater., 30(42), 1704290. https://doi.org/10.1002/adma.201704290.
  24. Larsson, S., Jansson, M. and Boholm, A. (2019), "Expert stakeholders' perception of nanotechnology: risk, benefit, knowledge, and regulation", J. Nanoparticle Res., 21, 57. https://doi.org/10.1007/s11051-019-4498-1.
  25. Lecoanet, H.F., Bottero, J.Y. and Wiesner, M.R. (2004), "Laboratory assessment of the mobility of nanomaterials in porous media", Environ. Sci. Technol., 38(19), 5164-5169. https://doi.org/10.1021/es0352303.
  26. Lecoanet, H.F. and Wiesner, M.R. (2004), "Velocity effects on fullerene and oxide nanoparticle deposition in porous media", Environ. Sci. Technol., 38(16), 4377-4382. https://doi.org/10.1021/es035354f.
  27. Lee, Y.C., Lee, K. and Oh, Y.K. (2015), "Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review", Bioresource Technol., 184, 63-72. https://doi.org/10.1016/j.biortech.2014.10.145.
  28. Li, Y.S., Wang, Y.G., Pennell, K.D. and Abriola, L.M. (2008), "Investigation of the transport and deposition of fullerene ($C_{60}$) nanoparticles in quartz sands under varying flow conditions", Environ. Sci. Technol., 42(19), 7174-7180. https://doi.org/10.1021/es801305y.
  29. Liang, Y., Bradford, S.A., Simunek, J. and Klumpp, E. (2019), "Mechanisms of graphene oxide aggregation, retention, and release in quartz sand", Sci. Total Environ., 656, 70-79. https://doi.org/10.1016/j.scitotenv.2018.11.258.
  30. Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S. and O'Carroll, D.M. (2015), "Predicting colloid transport through saturated porous media: A critical review", Water Resources Res., 51(9), 6804-6845. https://doi.org/10.1002/2015WR017318.
  31. Molnar, I.L., Pensini, E., Asad, M.A., Mitchell, C.A., Nitsche, L.C., Pyrak-Nolte, L.J., Mino, G.L. and Krol, M.M. (2019), "Colloid transport in porous media: A review of classical mechanisms and emerging topics", Transport in Porous Media, 130(1), 129-156. https://doi.org/10.1007/s11242-019-01270-6.
  32. Mu, L. and Sprando, R.L. (2010), "Application of nanotechnology in cosmetics", Pharmaceutical Res., 27(8), 1746-1749. https://doi.org/10.1007/s11095-010-0139-1.
  33. Nowack, B. and Bucheli, T.D. (2007), "Occurrence, behavior and effects of nanoparticles in the environment", Environ. Pollut., 150(1), 5-22. https://doi.org/10.1016/j.envpol.2007.06.006.
  34. Nowack, B., Boldrin, A., Caballero, A., Hansen, S.F., Gottschalk, F., Heggelund, L., Hennig, M., Mackevica, A., Maes, H., Navratilova, J., Neubauer, N., Peters, R., Rose, J., Schaffer, A., Scifo, L., van Leeuwen, S., von der Kammer, F., Wohlleben, W., Wyrwoll, A. and Hristozov, D. (2016), "Meeting the needs for released nanomaterials required for further testing-The SUN Approach", Environ. Sci. Technol., 50(6), 2747-2753. https://doi.org/10.1021/acs.est.5b04472.
  35. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. and Tufenkji, N. (2010), "Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions", Environ. Sci. Technol., 44(17), 6532-6549. https://doi.org/10.1021/es100598h.
  36. Ramos, A. P., Crus, M. A. E., Tovani, C. B. and Ciancaglini, P. (2017), "Biomedical applications of nanotechnology", Biophys. Rev., 9(2), 79-89. https://doi.org/10.1007/s12551-016-0246-2.
  37. Ryan, J.N. and Elimelech, M. (1996), "Colloid mobilization and transport in groundwater", Colloids Surfaces A Physicochem. Eng. Aspects, 107, 1-56. https://doi.org/10.1016/0927-7757(95)03384-X.
  38. Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2008), "Ionic strength and composition affect the mobility of surface-modified Fe-0 nanoparticles in water-saturated sand columns", Environ. Sci. Technol., 42(9), 3349-3355. https://doi.org/10.1021/es071936b.
  39. Santos, A.C., Morais, F., Simoes, A., Pereira, I., Sequeira, J.A.D. and Pereira-Silva, M. (2019), "Nanotechnology for the development of new cosmetic formulations", Expert Opinion Durg Delivery, 16(4), 313-330. https://doi.org/10.1080/17425247.2019.1585426.
  40. Serrano, E., Rus, G. and Garcia-Martinez, J. (2009), "Nanotechnology for sustainable energy", Renewable Sustainable Energy Rev., 13(9), 2373-2384. https://doi.org/10.1016/j.rser.2009.06.003.
  41. Shen, C.Y., Lazouskaya, V., Jin, Y., Li, B.G., Ma, Z.Q., Zheng, W.J. and Huang, Y.F. (2012), "Coupled factors influencing detachment of nano- and micro-sized particles from primary minima", J. Contaminant Hydrology, 134, 1-11. https://doi.org/10.1016/j.jconhyd.2012.04.003.
  42. Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M.R. and Bottero, J.Y. (2010), "Concurrent aggregation and deposition of $TiO_2$ nanoparticles in a sandy porous media", Environ. Sci. Technol., 44(13), 4897-4902. https://doi.org/10.1021/es1000819.
  43. Taghavy, A. and Abriola, L.M. (2018), "Modeling reactive transport of polydisperse nanoparticles: Assessment of the representative particle approach", Environ. Sci.: Nano, 5, 2293-2303. https://doi.org/10.1039/C8EN00666K.
  44. Tian, Y., Gao, B., Silvera-Batista, C. and Ziegler, K.J. (2010), "Transport of engineered nanomaterials in saturated porous media", J. Nanoparticle Res., 12(7), 2371-2380. https://doi.org/10.1007/s11051-010-9912-7.
  45. Tobiason, J.E. (1987), "Physicochemical aspects of particle deposition in porous media", Ph.D. Dissertation; Johns Hopkins University, Baltimore, U.S.A.
  46. Tolaymat, T.M., El Badawy, A.M., Genaidy, A., Scheckel, K.G., Luxton, T.P. and Suidan, M. (2010), "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers", Sci. Total Environ., 408(5), 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003.
  47. Torkzaban, S., Bradford, S.A., Wan, J., Tokunaga, T. and Masoudih, A. (2013), "Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time", Environ. Sci. Technol., 47(20), 11528-11536. https://doi.org/10.1021/es402075f.
  48. Torkzaban, S., Bradford, S.A., Vanderzalm, J.L., Patterson, B.M., Harris, B. and Prommer, H. (2015), "Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity", J. Contaminant Hydrology, 181, 161-171. https://doi.org/10.1016/j.jconhyd.2015.06.005.
  49. Verwey, E. and Overbeek, J.T.G. (1948), Theory of The Stability of Lyophobic Colloids, Elsevier, Amsterdam, The Netherlands.
  50. Walser, M. (1961), "Ion Association 5. Dissociation constants for complexes of citrate with sodium, potassium, calcium, and magnesium ions", J. Physical Chem., 65(1), 159-161. https://doi.org/10.1021/j100819a045.
  51. Wang, C., Bobba, A.D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.P. and Jin, Y. (2012), "Rentetion and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size", Environ. Sci. Technol., 46(13), 7151-7158. https://doi.org/10.1021/es300314n.
  52. Wang, D., Shen, C., Su, C., Chu, L. and Zhou, D. (2017), "Role of solution chemistry in the retention and release of graphen oxide nanomaterials in uncoated and iron oxide-coated sand", Sci. Total Environ., 579, 776-785. https://doi.org/10.1016/j.scitotenv.2016.11.029.
  53. Wang, P., Shi, Q.H., Liang, H.J., Steuerman, D.W., Stucky, G.D. and Keller, A.A. (2008a), "Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution", Small, 4(12), 2166-2170. https://doi.org/10.1002/smll.200800753.
  54. Wang, Y.G., Li, Y.S., Fortner, J.D., Hughes, J.B., Abriola, L.M. and Pennell, K.D. (2008b), "Transport and retention of nanoscale $C_{60}$ aggregates in water-saturated porous media", Environ. Sci. Technol., 42(10), 3588-3594. https://doi.org/10.1021/es800128m.
  55. Williams, R., Harrison, S., Keller, V., Kuenen, J., Lofts, S., Praetorius, A., Svendsen, C., Vermeulen, L.C. and van Wijnen, J. (2019), "Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment", Current Opinion in Environ. Sustainability, 36, 105-115. https://doi.org/10.1016/j.cosust.2018.11.002.
  56. Xia, T., Qu, Y., Liu, J., Qi, Z., Chen, W. and Wiesner, M.R. (2017), "Cation-inhibited transport of graphene oxide nanomaterials in saturated porous media: The Hofmeister effects", Environ. Sci. Technol., 51(2), 828-837. https://doi.org/10.1021/acs.est.6b05007.
  57. Xia, T., Ma, P., Qi, Y., Zhu, L., Qi, Z. and Chen, W. (2019), "Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation", Environ. Pollut., 247, 383-391. https://doi.org/10.1016/j.envpol.2019.01.052.
  58. Xu, N., Cheng, X., Zhou, K., Xu, X., Li, Z., Chen, J., Wang, D. and Li, D. (2018), "Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: Effects of pH, ionic strength, and ionic composition", Sci. Total Environ., 612, 1348-1357. https://doi.org/10.1007/s11051-015-2972-y.
  59. Zhang, M., Bradford, S.A., Simunek, J., Vereecken, H. and Klumpp, E. (2018), "Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil", Water Res., 109, 358-366. https://doi.org/10.1016/j.watres.2016.11.062.
  60. Zhang, T. (2012), "Modeling of nanoparticle transport in porous media", Ph.D. Dissertation; The University of Texas at Austin, Austin, U.S.A.
  61. Zhe, Z. and Yuxiu, A. (2018), "Nanotechnology for the oil and gas industry - an overview of recent progress", Nanotechnol. Rev., 7(4), 341-353. https://doi.org/10.1515/ntrev-2018-0061.
  62. Zhu, W., Bartos, P.J.M. and Porro, A. (2004), "Application of nanotechnology in construction - Summary of a state-of-the-art report", Mater. Struct., 37(273), 649-658. https://doi.org/10.1007/BF02483294.
  63. Zingg, R. and Fischer, M. (2019), "The rise of private-public collaboration in nanotechnology", Nano Today, 25, 7-9. https://doi.org/10.1016/j.nantod.2019.01.002.

Cited by

  1. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399