References
- Adrian, Y.F., Schniedewind, U., Bradford, S.A., Simunek, J., Fernandez-Steeger, T.M. and Azzam, R. (2018), "Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material", Environ. Pollut., 236, 195-207. https://doi.org/10.1016/j.envpol.2018.01.011.
- Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D. and Westerhoff, P. (2010), "The release of nanosilver from consumer products used in the home", J. Environ. Quality, 39(6), 1875-1882. https://doi.org/10.2134/jeq2009.0363.
- Bergendahl, J. and Grasso, D. (2000), "Prediction of colloid detachment in a model porous media: hydrodynamics", Chem. Eng. Sci., 55(9), 1523-1532. https://doi.org/10.1016/S0009-2509(99)00422-4.
- Berglund, L. A. and Burgert, I. (2018), "Bioinspired wood nanotechnology for functional materials", Adv. Mater., 30(19), 1704285. https://doi.org/10.1002/adma.201704285.
- Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J. and Corrie, S.R. (2016), "Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date", Pharmaceutical Res., 33(10), 2373-2387. https://doi.org/10.1007/s11095-016-1958-5.
- Chen, C., Waller, T. and Walker, S.L. (2017), "Visualization of transport and fate of nano and micro-scale particles in porous media: modeling coupled effects of ionic strength and size", Environ. Sci.: Nano, 4, 1025-1036. https://doi.org/10.1039/C6EN00558F.
- Currall, S.C. (2009), "Nanotechnology and society: New insights into public perceptions", Nature Nanotechnology, 4, 79-80. https://doi.org/10.1038/nnano.2008.423.
- Derjaguin, B.V. and Landau, L. (1941), "The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions", Acta Physicochim. URSS, 14, 633-652.
- Dong, S., Shi, X., Gao, B., Wu, J., Sun, Y., Guo, H., Xu, H. and Wu, J. (2016), "Retention and release of graphen oxide in structured heterogeneous porous media under saturated and unsaturated conditions", Environ. Sci. Technol., 50(19), 10397-10405. https://doi.org/10.1021/acs.est.6b01948.
- Elimelech, M., Jia, X., Gregory, J. and Williams, R. (1995), Particle Deposition and Aggregation: Measurement, Modelling and Simulation, (1st edition), Butterworth-Heinemann, Oxford, United Kingdom.
- Fan, W., Jiang, X.H., Yang, W., Geng, Z., Huo, M.X., Liu, Z.M. and Zhou, H. (2015), "Transport of graphen oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems", Sci. Total Environ., 511, 509-515. https://doi.org/10.1016/j.scitotenv.2014.12.099.
- Farokhzad, O.C. and Langer, R. (2009), "Impact of nanotechnology on drug Delivery", ACS Nano, 3(1), 16-20. https://doi.org/10.1021/nn900002m.
- Franchi, A. and O'Melia, C.R. (2003), "Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media", Environ. Sci. Technol., 37(6), 1122-1129. https://doi.org/10.1021/es015566h.
- Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., von Gleich, A. and Gottschalk, F. (2018), "Risks, release and concentrations of engineered nanomaterial in the environment", Scientific Reports, 8, 1565. https://doi.org/10.1038/s41598-018-19275-4.
-
Godinez, I.G. and Darnault, C.J.G. (2011), "Aggregation and transport of nano-
$TiO_2$ in saturated porous media: Effects of pH, surfactants and flow velocity", Water Res., 45, 839-851. https://doi.org/10.1016/j.watres.2010.09.013. - Hahn, M.W. and O'Melia, C.R. (2004), "Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications", Environ. Sci. Technol., 38(1), 210-220. https://doi.org/10.1021/es030416n.
- He, J., Wang, D., Zhang, W. and Zhou, D. (2019), "Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry", Chemosphere, 235, 643-650. https://doi.org/10.1016/j.chemosphere.2019.06.187.
- Jaisi, D.P., Saleh, N.B., Blake, R.E. and Elimelech, M. (2008), "Transport of single-walled carbon nanotubes in porous media: Filtration mechanisms and reversibility", Environ. Sci. Technol., 42(22), 8317-8323. https://doi.org/10.1021/es801641v.
- Jun, B.M., Kim, S., Heo, J., Park, C.M., Her, N., Jang, M., Huang, L., Han, J. and Yoon, Y. (2019), "Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications", Nano Res., 12(3), 471-487. https://doi.org/10.1007/s12274-018-2225-3.
- Kamrani, S., Rezaei, M., Kord, M. and Baalousha, M. (2018), "Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size", Water Res., 133, 338-347. https://doi.org/10.1016/j.watres.2017.08.045.
- Katz, L.M., Dewan, K. and Bronaugh, R.L. (2015), "Nanotechnology in cosmetics", Food Chem. Toxicology, 85, 127-137. https://doi.org/10.1016/j.fct.2015.06.020.
- Kim, I., Zhu, T., Youn, S. and Lawler, D.L. (2017), "Polymer-capped nanoparticle transport in granular media filtration: Deviation from the colloidal filtration model", J. Environ. Eng., 143(7), 03117003. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001228.
- Kwon, H.J., Shin, K., Soh, M., Chang, H., Kim, J., Lee, J., Ko, G., Kim, B.H., Kim, D. and Hyeon, T. (2018), "Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles", Adv. Mater., 30(42), 1704290. https://doi.org/10.1002/adma.201704290.
- Larsson, S., Jansson, M. and Boholm, A. (2019), "Expert stakeholders' perception of nanotechnology: risk, benefit, knowledge, and regulation", J. Nanoparticle Res., 21, 57. https://doi.org/10.1007/s11051-019-4498-1.
- Lecoanet, H.F., Bottero, J.Y. and Wiesner, M.R. (2004), "Laboratory assessment of the mobility of nanomaterials in porous media", Environ. Sci. Technol., 38(19), 5164-5169. https://doi.org/10.1021/es0352303.
- Lecoanet, H.F. and Wiesner, M.R. (2004), "Velocity effects on fullerene and oxide nanoparticle deposition in porous media", Environ. Sci. Technol., 38(16), 4377-4382. https://doi.org/10.1021/es035354f.
- Lee, Y.C., Lee, K. and Oh, Y.K. (2015), "Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review", Bioresource Technol., 184, 63-72. https://doi.org/10.1016/j.biortech.2014.10.145.
-
Li, Y.S., Wang, Y.G., Pennell, K.D. and Abriola, L.M. (2008), "Investigation of the transport and deposition of fullerene (
$C_{60}$ ) nanoparticles in quartz sands under varying flow conditions", Environ. Sci. Technol., 42(19), 7174-7180. https://doi.org/10.1021/es801305y. - Liang, Y., Bradford, S.A., Simunek, J. and Klumpp, E. (2019), "Mechanisms of graphene oxide aggregation, retention, and release in quartz sand", Sci. Total Environ., 656, 70-79. https://doi.org/10.1016/j.scitotenv.2018.11.258.
- Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S. and O'Carroll, D.M. (2015), "Predicting colloid transport through saturated porous media: A critical review", Water Resources Res., 51(9), 6804-6845. https://doi.org/10.1002/2015WR017318.
- Molnar, I.L., Pensini, E., Asad, M.A., Mitchell, C.A., Nitsche, L.C., Pyrak-Nolte, L.J., Mino, G.L. and Krol, M.M. (2019), "Colloid transport in porous media: A review of classical mechanisms and emerging topics", Transport in Porous Media, 130(1), 129-156. https://doi.org/10.1007/s11242-019-01270-6.
- Mu, L. and Sprando, R.L. (2010), "Application of nanotechnology in cosmetics", Pharmaceutical Res., 27(8), 1746-1749. https://doi.org/10.1007/s11095-010-0139-1.
- Nowack, B. and Bucheli, T.D. (2007), "Occurrence, behavior and effects of nanoparticles in the environment", Environ. Pollut., 150(1), 5-22. https://doi.org/10.1016/j.envpol.2007.06.006.
- Nowack, B., Boldrin, A., Caballero, A., Hansen, S.F., Gottschalk, F., Heggelund, L., Hennig, M., Mackevica, A., Maes, H., Navratilova, J., Neubauer, N., Peters, R., Rose, J., Schaffer, A., Scifo, L., van Leeuwen, S., von der Kammer, F., Wohlleben, W., Wyrwoll, A. and Hristozov, D. (2016), "Meeting the needs for released nanomaterials required for further testing-The SUN Approach", Environ. Sci. Technol., 50(6), 2747-2753. https://doi.org/10.1021/acs.est.5b04472.
- Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. and Tufenkji, N. (2010), "Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions", Environ. Sci. Technol., 44(17), 6532-6549. https://doi.org/10.1021/es100598h.
- Ramos, A. P., Crus, M. A. E., Tovani, C. B. and Ciancaglini, P. (2017), "Biomedical applications of nanotechnology", Biophys. Rev., 9(2), 79-89. https://doi.org/10.1007/s12551-016-0246-2.
- Ryan, J.N. and Elimelech, M. (1996), "Colloid mobilization and transport in groundwater", Colloids Surfaces A Physicochem. Eng. Aspects, 107, 1-56. https://doi.org/10.1016/0927-7757(95)03384-X.
- Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2008), "Ionic strength and composition affect the mobility of surface-modified Fe-0 nanoparticles in water-saturated sand columns", Environ. Sci. Technol., 42(9), 3349-3355. https://doi.org/10.1021/es071936b.
- Santos, A.C., Morais, F., Simoes, A., Pereira, I., Sequeira, J.A.D. and Pereira-Silva, M. (2019), "Nanotechnology for the development of new cosmetic formulations", Expert Opinion Durg Delivery, 16(4), 313-330. https://doi.org/10.1080/17425247.2019.1585426.
- Serrano, E., Rus, G. and Garcia-Martinez, J. (2009), "Nanotechnology for sustainable energy", Renewable Sustainable Energy Rev., 13(9), 2373-2384. https://doi.org/10.1016/j.rser.2009.06.003.
- Shen, C.Y., Lazouskaya, V., Jin, Y., Li, B.G., Ma, Z.Q., Zheng, W.J. and Huang, Y.F. (2012), "Coupled factors influencing detachment of nano- and micro-sized particles from primary minima", J. Contaminant Hydrology, 134, 1-11. https://doi.org/10.1016/j.jconhyd.2012.04.003.
-
Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M.R. and Bottero, J.Y. (2010), "Concurrent aggregation and deposition of
$TiO_2$ nanoparticles in a sandy porous media", Environ. Sci. Technol., 44(13), 4897-4902. https://doi.org/10.1021/es1000819. - Taghavy, A. and Abriola, L.M. (2018), "Modeling reactive transport of polydisperse nanoparticles: Assessment of the representative particle approach", Environ. Sci.: Nano, 5, 2293-2303. https://doi.org/10.1039/C8EN00666K.
- Tian, Y., Gao, B., Silvera-Batista, C. and Ziegler, K.J. (2010), "Transport of engineered nanomaterials in saturated porous media", J. Nanoparticle Res., 12(7), 2371-2380. https://doi.org/10.1007/s11051-010-9912-7.
- Tobiason, J.E. (1987), "Physicochemical aspects of particle deposition in porous media", Ph.D. Dissertation; Johns Hopkins University, Baltimore, U.S.A.
- Tolaymat, T.M., El Badawy, A.M., Genaidy, A., Scheckel, K.G., Luxton, T.P. and Suidan, M. (2010), "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers", Sci. Total Environ., 408(5), 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003.
- Torkzaban, S., Bradford, S.A., Wan, J., Tokunaga, T. and Masoudih, A. (2013), "Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time", Environ. Sci. Technol., 47(20), 11528-11536. https://doi.org/10.1021/es402075f.
- Torkzaban, S., Bradford, S.A., Vanderzalm, J.L., Patterson, B.M., Harris, B. and Prommer, H. (2015), "Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity", J. Contaminant Hydrology, 181, 161-171. https://doi.org/10.1016/j.jconhyd.2015.06.005.
- Verwey, E. and Overbeek, J.T.G. (1948), Theory of The Stability of Lyophobic Colloids, Elsevier, Amsterdam, The Netherlands.
- Walser, M. (1961), "Ion Association 5. Dissociation constants for complexes of citrate with sodium, potassium, calcium, and magnesium ions", J. Physical Chem., 65(1), 159-161. https://doi.org/10.1021/j100819a045.
- Wang, C., Bobba, A.D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.P. and Jin, Y. (2012), "Rentetion and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size", Environ. Sci. Technol., 46(13), 7151-7158. https://doi.org/10.1021/es300314n.
- Wang, D., Shen, C., Su, C., Chu, L. and Zhou, D. (2017), "Role of solution chemistry in the retention and release of graphen oxide nanomaterials in uncoated and iron oxide-coated sand", Sci. Total Environ., 579, 776-785. https://doi.org/10.1016/j.scitotenv.2016.11.029.
- Wang, P., Shi, Q.H., Liang, H.J., Steuerman, D.W., Stucky, G.D. and Keller, A.A. (2008a), "Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution", Small, 4(12), 2166-2170. https://doi.org/10.1002/smll.200800753.
-
Wang, Y.G., Li, Y.S., Fortner, J.D., Hughes, J.B., Abriola, L.M. and Pennell, K.D. (2008b), "Transport and retention of nanoscale
$C_{60}$ aggregates in water-saturated porous media", Environ. Sci. Technol., 42(10), 3588-3594. https://doi.org/10.1021/es800128m. - Williams, R., Harrison, S., Keller, V., Kuenen, J., Lofts, S., Praetorius, A., Svendsen, C., Vermeulen, L.C. and van Wijnen, J. (2019), "Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment", Current Opinion in Environ. Sustainability, 36, 105-115. https://doi.org/10.1016/j.cosust.2018.11.002.
- Xia, T., Qu, Y., Liu, J., Qi, Z., Chen, W. and Wiesner, M.R. (2017), "Cation-inhibited transport of graphene oxide nanomaterials in saturated porous media: The Hofmeister effects", Environ. Sci. Technol., 51(2), 828-837. https://doi.org/10.1021/acs.est.6b05007.
- Xia, T., Ma, P., Qi, Y., Zhu, L., Qi, Z. and Chen, W. (2019), "Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation", Environ. Pollut., 247, 383-391. https://doi.org/10.1016/j.envpol.2019.01.052.
- Xu, N., Cheng, X., Zhou, K., Xu, X., Li, Z., Chen, J., Wang, D. and Li, D. (2018), "Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: Effects of pH, ionic strength, and ionic composition", Sci. Total Environ., 612, 1348-1357. https://doi.org/10.1007/s11051-015-2972-y.
- Zhang, M., Bradford, S.A., Simunek, J., Vereecken, H. and Klumpp, E. (2018), "Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil", Water Res., 109, 358-366. https://doi.org/10.1016/j.watres.2016.11.062.
- Zhang, T. (2012), "Modeling of nanoparticle transport in porous media", Ph.D. Dissertation; The University of Texas at Austin, Austin, U.S.A.
- Zhe, Z. and Yuxiu, A. (2018), "Nanotechnology for the oil and gas industry - an overview of recent progress", Nanotechnol. Rev., 7(4), 341-353. https://doi.org/10.1515/ntrev-2018-0061.
- Zhu, W., Bartos, P.J.M. and Porro, A. (2004), "Application of nanotechnology in construction - Summary of a state-of-the-art report", Mater. Struct., 37(273), 649-658. https://doi.org/10.1007/BF02483294.
- Zingg, R. and Fischer, M. (2019), "The rise of private-public collaboration in nanotechnology", Nano Today, 25, 7-9. https://doi.org/10.1016/j.nantod.2019.01.002.
Cited by
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399