References
- Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2003), "Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory", Compos. Struct., 62(1), 27-39. https://doi.org/10.1016/S0263-8223(03)00081-3.
- Abdelaziz, H. H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
- Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct. 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.AID-NME573%3E3.0.CO;2-P.
- Akoz, A. and Kadioglu, K. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct. 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.
- Akoz, A. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", J. Numeric Methods Eng.,47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12%3C1933::AID-NME860%3E3.0.CO;2-0.
- Akoz, A. and Uzcan, N. (1992), "The new functional for reissner plates and its application", Comput. Struct. 44(5), 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V.
- Akoz, A., Omurtag, M. and Dogruoglu, A. (1991), "The mixed finite element formulation for three-dimensional bars", J. Solid Struct., 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V.
- Akoz, A.Y. and Eratli, N. (2000), "A sectorial element based on Reissner plate theory", Struct. Eng. Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519.
- Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", J. Numeric Methods Eng., 44(12), 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12%3C1909::
- Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77. https://doi.org/10.1002/sapm1944231184.
- Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct. 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
- Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct. 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart. Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Belinha, J. and Dinis, L. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84(22), 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013.
- Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Bellifa, H., A. Bakora, A. Tounsi, A. A. Bousahla and S. Mahmoud (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
- Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
- Bischoff, M. and Bletzinger, K.U. (2004), "Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization", Comput. Methods Appl. Mech. Eng., 193(15), 1517-1528. https://doi.org/10.1016/j.cma.2003.12.036.
- Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
- Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
- Capsoni, A. and Corradi, L. (1997), "A mixed finite element model for plane strain elastic-plastic analysis Part I. Formulation and assessment of the overall behaviour", Comput. Methods Appl. Mech. Eng., 141(1-2), 67-79. https://doi.org/10.1016/S0045-7825(96)01098-5
- Cervera, M., Chiumenti, M. and Codina, R. (2010), "Mixed stabilized finite element methods in nonlinear solid mechanics: Part ii: Strain localization", Comput. Methods Appl. Mech. Eng., 199(37), 2571-2589. https://doi.org/10.1016/j.cma.2010.04.005.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart. Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
- Daouadji, T. H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
- Desai, Y., Ramtekkar, G. and Shah, A. (2003), "Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model", Compos. Struct., 59(2), 237-249. https://doi.org/10.1016/S0263-8223(02)00121-6.
- Draiche, K., Tounsi, A. and Mahmoud, S. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng.,11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
- Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)", J. Nano Res., 57, https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277.
- Eratll, N. and Akoz, A. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65(4), 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8.
- Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
- Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
- Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
- Grover, N., Maiti, D. and Singh, B. (2014), "An efficient C 0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates", Finite Elements Anal. Design, 80, 11-22. https://doi.org/10.1016/j.finel.2013.11.003.
- Houari, T., Bessaim, A., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018), "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.
- Javed, S., Viswanathan, K., Izyan, M., Aziz, Z. and Lee, J. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.
- Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
- Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", J. Solid Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
- Mantari, J., Oktem, A. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", J. Solid Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.
- Meksi, R., S. Benyoucef, A. Mahmoudi, A. Tounsi, Adda Bedia, E.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and S. Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct. 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech. Trans. ASME, 18, 31-38. https://doi.org/10.1115/1.4010217
- Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", J. Struct. Stability Dynam., 13(02), https://doi.org/10.1142/S0219455412500563.
- Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.
- Pagano, N. and H. J. Hatfield (1972), "Elastic behavior of multilayered bidirectional composites", AIAA J., 10(7), 931-933. https://doi.org/10.2514/3.50249.
- Ramu, I. and S. Mohanty (2012), "Study on free vibration analysis of rectangular plate structures using finite element method", Procedia Eng., 38, 2758-2766. https://doi.org/10.1016/j.proeng.2012.06.323.
- Reddy, J. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct. 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I.
- Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J. N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, USA.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1177/002199836900300316.
- Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", J. Solid Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.
- Sahoo, R. and B. Singh (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043.
- Sahoo, R. and B. Singh (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
- Sheikh, A. and A. Chakrabarti (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elements Anal. Design, 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3.
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
- Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477.
- Taleb, O., Houari, M. S. A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4), 369-383. https://doi.org/10.12989/sem.2018.67.4.369.
- Thai, C. H., L. V. Tran, D. T. Tran, T. Nguyen-Thoi and H. Nguyen-Xuan (2012), "Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method", Appl. Math. Model. 36(11), 5657-5677. https://doi.org/10.1016/j.apm.2012.01.003.
- Touratier, M. (1991), "An efficient standard plate theory", International journal of engineering science 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Tu, T. M., Quoc, T. H., & Van Long, N. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.
- Whitney, J. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater. 3(3), 534-547. https://doi.org/10.1177/002199836900300316.
- Xiao, J., D. Gilhooley, R. Batra, J. Gillespie and M. McCarthy (2008), "Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Compos. Part B Eng., 39(2), 414-427. https://doi.org/10.1016/j.compositesb.2006.12.009.
- Yaghoubshahi, M. and Alinia, M.M. (2015), "Developing an element free method for higher order shear deformation analysis of plates", Thin Wall. Struct., 94, 225-233. https://doi.org/10.1016/j.tws.2015.04.022.
- Yousfi, M., Atmane, H. A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
- Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.
- Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84(4), 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.
- Zienkiewicz, O., Taylor, R. and Baynham, J. (1981), "Mixed and irreducible formulations in finite element analysis- Some general comments and applications to the incompressibility problem (in solid and fluid mechanics)", International Symposium on Hybrid and Mixed Finite Element Methods, Atlanta, GA.
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct. 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.
- Zuo, H., Yang, Z., Chen, X., Xie, Y. and H. Miao (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct. 131, 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064.
Cited by
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
- Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state vol.77, pp.1, 2021, https://doi.org/10.12989/sem.2021.77.1.137
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- The treatment of constraints due to standard boundary conditions in the context of the mixed Web-spline finite element method vol.38, pp.7, 2021, https://doi.org/10.1108/ec-02-2020-0078
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.203