DOI QR코드

DOI QR Code

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah (Department of Civil Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University) ;
  • Ozutok, Atilla (Department of Civil Engineering, Faculty of Engineering, KTO Karatay University)
  • Received : 2019.01.18
  • Accepted : 2019.09.15
  • Published : 2020.01.10

Abstract

This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Keywords

References

  1. Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2003), "Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory", Compos. Struct., 62(1), 27-39. https://doi.org/10.1016/S0263-8223(03)00081-3.
  2. Abdelaziz, H. H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  3. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct. 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.AID-NME573%3E3.0.CO;2-P.
  4. Akoz, A. and Kadioglu, K. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct. 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.
  5. Akoz, A. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", J. Numeric Methods Eng.,47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12%3C1933::AID-NME860%3E3.0.CO;2-0.
  6. Akoz, A. and Uzcan, N. (1992), "The new functional for reissner plates and its application", Comput. Struct. 44(5), 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V.
  7. Akoz, A., Omurtag, M. and Dogruoglu, A. (1991), "The mixed finite element formulation for three-dimensional bars", J. Solid Struct., 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V.
  8. Akoz, A.Y. and Eratli, N. (2000), "A sectorial element based on Reissner plate theory", Struct. Eng. Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519.
  9. Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", J. Numeric Methods Eng., 44(12), 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12%3C1909::
  10. Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77. https://doi.org/10.1002/sapm1944231184.
  11. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  12. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct. 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
  13. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct. 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  14. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  15. Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart. Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  16. Belinha, J. and Dinis, L. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84(22), 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013.
  17. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  18. Bellifa, H., A. Bakora, A. Tounsi, A. A. Bousahla and S. Mahmoud (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  19. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  20. Bischoff, M. and Bletzinger, K.U. (2004), "Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization", Comput. Methods Appl. Mech. Eng., 193(15), 1517-1528. https://doi.org/10.1016/j.cma.2003.12.036.
  21. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  22. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  23. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  24. Capsoni, A. and Corradi, L. (1997), "A mixed finite element model for plane strain elastic-plastic analysis Part I. Formulation and assessment of the overall behaviour", Comput. Methods Appl. Mech. Eng., 141(1-2), 67-79. https://doi.org/10.1016/S0045-7825(96)01098-5
  25. Cervera, M., Chiumenti, M. and Codina, R. (2010), "Mixed stabilized finite element methods in nonlinear solid mechanics: Part ii: Strain localization", Comput. Methods Appl. Mech. Eng., 199(37), 2571-2589. https://doi.org/10.1016/j.cma.2010.04.005.
  26. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart. Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  27. Daouadji, T. H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  28. Desai, Y., Ramtekkar, G. and Shah, A. (2003), "Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model", Compos. Struct., 59(2), 237-249. https://doi.org/10.1016/S0263-8223(02)00121-6.
  29. Draiche, K., Tounsi, A. and Mahmoud, S. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng.,11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  30. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)", J. Nano Res., 57, https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  31. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  32. Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277.
  33. Eratll, N. and Akoz, A. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65(4), 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8.
  34. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  35. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  36. Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
  37. Grover, N., Maiti, D. and Singh, B. (2014), "An efficient C 0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates", Finite Elements Anal. Design, 80, 11-22. https://doi.org/10.1016/j.finel.2013.11.003.
  38. Houari, T., Bessaim, A., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018), "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.
  39. Javed, S., Viswanathan, K., Izyan, M., Aziz, Z. and Lee, J. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.
  40. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  41. Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", J. Solid Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  42. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  43. Mantari, J., Oktem, A. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", J. Solid Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.
  44. Meksi, R., S. Benyoucef, A. Mahmoudi, A. Tounsi, Adda Bedia, E.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
  45. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and S. Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct. 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  46. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech. Trans. ASME, 18, 31-38. https://doi.org/10.1115/1.4010217
  47. Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", J. Struct. Stability Dynam., 13(02), https://doi.org/10.1142/S0219455412500563.
  48. Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.
  49. Pagano, N. and H. J. Hatfield (1972), "Elastic behavior of multilayered bidirectional composites", AIAA J., 10(7), 931-933. https://doi.org/10.2514/3.50249.
  50. Ramu, I. and S. Mohanty (2012), "Study on free vibration analysis of rectangular plate structures using finite element method", Procedia Eng., 38, 2758-2766. https://doi.org/10.1016/j.proeng.2012.06.323.
  51. Reddy, J. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct. 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I.
  52. Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  53. Reddy, J. N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, USA.
  54. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1177/002199836900300316.
  55. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", J. Solid Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.
  56. Sahoo, R. and B. Singh (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043.
  57. Sahoo, R. and B. Singh (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
  58. Sheikh, A. and A. Chakrabarti (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elements Anal. Design, 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3.
  59. Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
  60. Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477.
  61. Taleb, O., Houari, M. S. A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4), 369-383. https://doi.org/10.12989/sem.2018.67.4.369.
  62. Thai, C. H., L. V. Tran, D. T. Tran, T. Nguyen-Thoi and H. Nguyen-Xuan (2012), "Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method", Appl. Math. Model. 36(11), 5657-5677. https://doi.org/10.1016/j.apm.2012.01.003.
  63. Touratier, M. (1991), "An efficient standard plate theory", International journal of engineering science 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  64. Tu, T. M., Quoc, T. H., & Van Long, N. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.
  65. Whitney, J. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater. 3(3), 534-547. https://doi.org/10.1177/002199836900300316.
  66. Xiao, J., D. Gilhooley, R. Batra, J. Gillespie and M. McCarthy (2008), "Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Compos. Part B Eng., 39(2), 414-427. https://doi.org/10.1016/j.compositesb.2006.12.009.
  67. Yaghoubshahi, M. and Alinia, M.M. (2015), "Developing an element free method for higher order shear deformation analysis of plates", Thin Wall. Struct., 94, 225-233. https://doi.org/10.1016/j.tws.2015.04.022.
  68. Yousfi, M., Atmane, H. A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
  69. Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.
  70. Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84(4), 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.
  71. Zienkiewicz, O., Taylor, R. and Baynham, J. (1981), "Mixed and irreducible formulations in finite element analysis- Some general comments and applications to the incompressibility problem (in solid and fluid mechanics)", International Symposium on Hybrid and Mixed Finite Element Methods, Atlanta, GA.
  72. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct. 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.
  73. Zuo, H., Yang, Z., Chen, X., Xie, Y. and H. Miao (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct. 131, 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064.

Cited by

  1. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
  2. Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state vol.77, pp.1, 2021, https://doi.org/10.12989/sem.2021.77.1.137
  3. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  4. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  5. The treatment of constraints due to standard boundary conditions in the context of the mixed Web-spline finite element method vol.38, pp.7, 2021, https://doi.org/10.1108/ec-02-2020-0078
  6. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  7. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.203