References
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ, USA.
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31-32), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001.
- Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009.
- Chang, S-I. (2014), "A family of noniterative integration methods with desired numerical dissipation", J. Numeric. Method. Eng., 100, 62-86. https://doi.org/10.1002/nme.4720.
- Chang, S-Y., Wu, T-H. and Tran, N-C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815.
- Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", J. Numeric. Method. Eng., 37(23), 3961-3976. https://doi.org/10.1002/nme.1620372303.
- Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, Computers and Structures Inc., Berkeley, CA, USA.
- Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3.
- Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progress Struct. Eng. Mater., 5(3), 167-180. https://doi.org/10.1002/pse.149.
- Hilber, H.M., Hughes, T.J.R and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dynam., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306.
- Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronautic. Sci., 17(9), 540-550. https://doi.org/10.2514/8.1722.
- Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA.
- Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137(2), 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5.
- Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504. https://doi.org/10.12989/sem.2017.6.4.495.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
- Noh, G. and Bathe, K.J. (2013), "An explicit time integration scheme for the analysis of wave propagations", Comput. Struct., 129, 178-193. https://doi.org/10.1016/j.compstruc.2013.06.007.
- Noh, G. and Bathe, K.J. (2018), "Further insights into an implicit time integration scheme for structural dynamics", Comput. Struct., 202, 15-24. https://doi.org/10.1016/j.compstruc.2018.02.007.
-
Noh, G. and Bathe, K.J. (2019), "The Bathe time integration method with controllable spectral radius: The
${\rho}^{{\infty}}$ -Bathe method", Comput. Struct., 212, 299-310. https://doi.org/10.1016/j.compstruc.2018.11.001. - Park, K.C. (1975), "An improved stiffly stable method for direct integration of nonlinear structural dynamic equations", J. Appl. Mech., 42(2), 464-470. https://doi.org/10.1115/1.3423600
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2018), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math., 37(3), 3431-3454. https://doi.org/ 10.1007/s40314-017-0520-3.
- Shojaee, S., Rostami, S. and Moeinadini, A. (2011), "The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions", Struct. Eng. Mech., 38(2), 211-229. https://doi.org/10.12989/sem.2011.38.2.211.
- Shojaee, S., Rostami, S. and Abbasi, A. (2015), "An unconditionally stable implicit time integration algorithm: modified quartic B-spline method", Comput. Struct., 153, 98-111. https://doi.org/10.1016/j.compstruc.2015.02.030.
- Soares, D. (2011), "A new family of time marching procedures based on Green's function matrices", Comput. Struct., 89(1-2), 266-276. https://doi.org/10.1016/j.compstruc.2010.10.011.
- Soares, D. (2015), "A simple and effective new family of time marching procedures for dynamics", Comput. Method. Appl. Mech. Eng., 283, 1138-1166. https://doi.org/10.1016/j.cma.2014.08.007.
- Soares, D. (2016), "A novel family of explicit time marching techniques for structural dynamics and wave propagation models", Comput. Method. Appl. Mech. Eng., 311(3), 838-855. https://doi.org/10.1016/j.cma.2016.09.021.
- Soares, D. (2017), "A simple and effective single-step time marching technique based on adaptive time integrators", J. Numeric. Method. Eng., 109(9), 1344-1368. https://doi.org/10.1002/nme.5329.
- Soares Jr, D. and Grosseholz, G. (2018), "Nonlinear structural dynamic analysis by a stabilized central difference method", Eng. Struct., 173, 383-392. https://doi.org/10.1016/j.engstruct.2018.06.115.
- Soares Jr, D. (2019a), "A locally stabilized central difference method", Finite Element. Anal. Design, 155, 1-10. https://doi.org/10.1016/j.finel.2018.12.001.
- Soares Jr, D. (2019b), "An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics", Comput. Method. Appl. Mech. Eng., 354(1), 637-662. https://doi.org/10.1016/j.cma.2019.05.040.
- Soares Jr, D. (2019c), "A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis", J. Numeric. Method. Eng., 119(7), 590-617. https://doi.org/10.1002/nme.6064.
- Soares Jr, D. and Wrobel, L.C. (2019), "A locally stabilized explicit approach for nonlinear heat conduction analysis", Comput. Struct., 214, 40-47. https://doi.org/10.1016/j.compstruc.2019.01.004.
- Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5.
- Tamma, K.K. and Namburu, R.R. (1990), "A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations", J. Numeric. Method. Eng., 29(7), 1441-1454. https://doi.org/10.1002/nme.1620290705.
- Tamma, K.K., Zhou, X. and Sha, D. (2000), "The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications", Archives Comput. Methods Eng., 7(2), 67-290. https://doi.org/10.1007/BF02736209.
- Wen, W.B., Jian, K.L., and Luo, S.M. (1980), "An explicit time integration method for structural dynamics using septuple B-spline functions", J. Numeric. Method. Eng., 97(9), 629-657. https://doi.org/10.1002/nme.4599.
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1980), "An alpha modification of Newmark's method", J. Numeric. Method. Eng., 15(10), 1562-1566. https://doi.org/10.1002/nme.1620151011.
- Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", J. Struct. Stability Dynam., 13(3), https://doi.org/10.1142/S021945541250068X.