DOI QR코드

DOI QR Code

An effective locally-defined time marching procedure for structural dynamics

  • Sofiste, Tales Vieira (Civil Engineering Department, COPPE, Federal University of Rio de Janeiro. Modeling Methods in Engineering and Geophysics Laboratory - LAMEMO) ;
  • Soares, Delfim Jr (Structural Engineering Department, Federal University of Juiz de Fora) ;
  • Mansur, Webe Joao (Civil Engineering Department, COPPE, Federal University of Rio de Janeiro. Modeling Methods in Engineering and Geophysics Laboratory - LAMEMO)
  • Received : 2018.11.12
  • Accepted : 2019.08.27
  • Published : 2020.01.10

Abstract

The present work describes a new time marching procedure for structural dynamics analyses. In this novel technique, time integration parameters are automatically evaluated according to the properties of the model. Such parameters are locally defined, allowing the user to input a numerical dissipation property for each element, which defines the amount of numerical dissipation to be introduced. Since the integration parameters are locally defined as a function of the structural element itself, the time marching technique adapts according to the model, providing enhanced accuracy. The new methodology is based on displacement-velocity relations and no computation of accelerations is required. Furthermore, the method is second order accurate, it has guaranteed stability, it is truly self-starting and it allows highly controllable algorithm dissipation in the higher modes. Numerical results are presented and compared to those provided by the Newmark and the Bathe methods, illustrating the good performance of the new time marching procedure.

Keywords

References

  1. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ, USA.
  2. Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31-32), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001.
  3. Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009.
  4. Chang, S-I. (2014), "A family of noniterative integration methods with desired numerical dissipation", J. Numeric. Method. Eng., 100, 62-86. https://doi.org/10.1002/nme.4720.
  5. Chang, S-Y., Wu, T-H. and Tran, N-C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815.
  6. Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", J. Numeric. Method. Eng., 37(23), 3961-3976. https://doi.org/10.1002/nme.1620372303.
  7. Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, Computers and Structures Inc., Berkeley, CA, USA.
  8. Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3.
  9. Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progress Struct. Eng. Mater., 5(3), 167-180. https://doi.org/10.1002/pse.149.
  10. Hilber, H.M., Hughes, T.J.R and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dynam., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306.
  11. Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronautic. Sci., 17(9), 540-550. https://doi.org/10.2514/8.1722.
  12. Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA.
  13. Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137(2), 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5.
  14. Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504. https://doi.org/10.12989/sem.2017.6.4.495.
  15. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
  16. Noh, G. and Bathe, K.J. (2013), "An explicit time integration scheme for the analysis of wave propagations", Comput. Struct., 129, 178-193. https://doi.org/10.1016/j.compstruc.2013.06.007.
  17. Noh, G. and Bathe, K.J. (2018), "Further insights into an implicit time integration scheme for structural dynamics", Comput. Struct., 202, 15-24. https://doi.org/10.1016/j.compstruc.2018.02.007.
  18. Noh, G. and Bathe, K.J. (2019), "The Bathe time integration method with controllable spectral radius: The ${\rho}^{{\infty}}$-Bathe method", Comput. Struct., 212, 299-310. https://doi.org/10.1016/j.compstruc.2018.11.001.
  19. Park, K.C. (1975), "An improved stiffly stable method for direct integration of nonlinear structural dynamic equations", J. Appl. Mech., 42(2), 464-470. https://doi.org/10.1115/1.3423600
  20. Rezaiee-Pajand, M. and Karimi-Rad, M. (2018), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math., 37(3), 3431-3454. https://doi.org/ 10.1007/s40314-017-0520-3.
  21. Shojaee, S., Rostami, S. and Moeinadini, A. (2011), "The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions", Struct. Eng. Mech., 38(2), 211-229. https://doi.org/10.12989/sem.2011.38.2.211.
  22. Shojaee, S., Rostami, S. and Abbasi, A. (2015), "An unconditionally stable implicit time integration algorithm: modified quartic B-spline method", Comput. Struct., 153, 98-111. https://doi.org/10.1016/j.compstruc.2015.02.030.
  23. Soares, D. (2011), "A new family of time marching procedures based on Green's function matrices", Comput. Struct., 89(1-2), 266-276. https://doi.org/10.1016/j.compstruc.2010.10.011.
  24. Soares, D. (2015), "A simple and effective new family of time marching procedures for dynamics", Comput. Method. Appl. Mech. Eng., 283, 1138-1166. https://doi.org/10.1016/j.cma.2014.08.007.
  25. Soares, D. (2016), "A novel family of explicit time marching techniques for structural dynamics and wave propagation models", Comput. Method. Appl. Mech. Eng., 311(3), 838-855. https://doi.org/10.1016/j.cma.2016.09.021.
  26. Soares, D. (2017), "A simple and effective single-step time marching technique based on adaptive time integrators", J. Numeric. Method. Eng., 109(9), 1344-1368. https://doi.org/10.1002/nme.5329.
  27. Soares Jr, D. and Grosseholz, G. (2018), "Nonlinear structural dynamic analysis by a stabilized central difference method", Eng. Struct., 173, 383-392. https://doi.org/10.1016/j.engstruct.2018.06.115.
  28. Soares Jr, D. (2019a), "A locally stabilized central difference method", Finite Element. Anal. Design, 155, 1-10. https://doi.org/10.1016/j.finel.2018.12.001.
  29. Soares Jr, D. (2019b), "An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics", Comput. Method. Appl. Mech. Eng., 354(1), 637-662. https://doi.org/10.1016/j.cma.2019.05.040.
  30. Soares Jr, D. (2019c), "A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis", J. Numeric. Method. Eng., 119(7), 590-617. https://doi.org/10.1002/nme.6064.
  31. Soares Jr, D. and Wrobel, L.C. (2019), "A locally stabilized explicit approach for nonlinear heat conduction analysis", Comput. Struct., 214, 40-47. https://doi.org/10.1016/j.compstruc.2019.01.004.
  32. Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5.
  33. Tamma, K.K. and Namburu, R.R. (1990), "A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations", J. Numeric. Method. Eng., 29(7), 1441-1454. https://doi.org/10.1002/nme.1620290705.
  34. Tamma, K.K., Zhou, X. and Sha, D. (2000), "The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications", Archives Comput. Methods Eng., 7(2), 67-290. https://doi.org/10.1007/BF02736209.
  35. Wen, W.B., Jian, K.L., and Luo, S.M. (1980), "An explicit time integration method for structural dynamics using septuple B-spline functions", J. Numeric. Method. Eng., 97(9), 629-657. https://doi.org/10.1002/nme.4599.
  36. Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1980), "An alpha modification of Newmark's method", J. Numeric. Method. Eng., 15(10), 1562-1566. https://doi.org/10.1002/nme.1620151011.
  37. Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", J. Struct. Stability Dynam., 13(3), https://doi.org/10.1142/S021945541250068X.