DOI QR코드

DOI QR Code

New higher-order triangular shell finite elements based on the partition of unity

  • Jun, Hyungmin (Department of Mechanical System Engineering, Jeonbuk National University)
  • Received : 2019.07.03
  • Accepted : 2019.10.04
  • Published : 2020.01.10

Abstract

Finite elements based on the partition of unity (PU) approximation have powerful capabilities for p-adaptivity and solutions with high smoothness without remeshing of the domain. Recently, the PU approximation was successfully applied to the three-node shell finite element, properly eliminating transverse shear locking and showing excellent convergence properties and solution accuracy. However, the enrichment with the PU approximation results in a significant increase in the number of degrees of freedom; therefore, it requires greater computational cost, thus making it less suitable for practical engineering. To circumvent this disadvantage, we propose a new strategy to decrease the total number of degrees of freedom in the existing PU-based shell element, without loss of optimal convergence and accuracy. To alleviate the locking phenomenon, we use the method of mixed interpolation of tensorial components and perform convergence studies to show the accuracy and capability of the proposed shell element. The excellent performances of the new shell elements are illustrated in three benchmark problems.

Keywords

References

  1. Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4%3C727::AID-NME86%3E3.0.CO;2-N.
  2. Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, Higher Education Press, China.
  3. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Methods Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312.
  4. Bathe, K.J., Iosilevich, A. and Chapelle, D. (2000), "An inf-sup test for shell finite elements", Comput. Struct., 75, 439-456. https://doi.org/10.1016/S0045-7949(99)00213-8.
  5. Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2.
  6. Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one point quadrature", Comput. Methods Appl. Mech. Eng., 113, 321-350. https://doi.org/10.1016/0045-7825(94)90052-3.
  7. Belytschko, T., Gracie, R. and Ventura, G. (2009), "A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. Sci. Eng., 17. https://doi.org/10.1088/0965-0393/17/4/043001.
  8. Cai, Y., Zhuang, X. and Augarde, C. (2010), "A new partition of unity finite element free from the linear dependence problem and possessing the delta property", Comput. Methods Appl. Mech. Eng., 199, 1036-1043. https://doi.org/10.1016/j.cma.2009.11.019.
  9. Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New Jersey, USA.
  10. Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three-dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4.
  11. Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Methods Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4.
  12. Hiller, J.F. and Bathe, K.J. (2003), "Measuring convergence of mixed finite element discretizations: an application to shell structures", Comput. Struct., 81, 639-654. https://doi.org/10.1016/S0045-7949(03)00010-5.
  13. Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, MA, USA.
  14. Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003.
  15. Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004.
  16. Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Methods Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.
  17. Jun, H., Mukai, P. and Kim, S. (2018), "Benchmark tests of MITC triangular shell elements", Struct. Eng. Mech., 68, 17-38. https://doi.org/10.12989/sem.2018.68.1.017.
  18. Katili, A.M., Maknun, I.J. and Katili, I. (2019), "Theoretical equivalence and numerical performance of T3ys and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.
  19. Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004.
  20. Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29, 203-221. https://doi.org/10.12989/sem.2008.29.2.203.
  21. Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
  22. Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164. https://doi.org/10.1016/j.compstruc.2015.02.033.
  23. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Methods Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0.
  24. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X.
  25. Oden, J.T., Duarte, C.A.M. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X.
  26. Rajendran, S. and Zhang, B.R. (2007), "A "FE-meshfree" QUAD4 element based on partition of unity", Comput. Methods Appl. Mech. Eng., 197, 128-147. https://doi.org/10.1016/j.cma.2007.07.010.
  27. Schenk, O. and Gartner, K. (2004), "Solving unsymmetric sparse systems of linear equations with PARDISO", Future Gener. Comput. Syst., 20, 475-487. https://doi.org/10.1016/j.future.2003.07.011.
  28. Shi, G.H. (1991), "Manifold method of material analysis", Transactions of the 9th army conference on applied mathematics and computing, Report No. 92-1, US Army Research Office, USA.
  29. Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., 48, 125-150. https://doi.org/10.12989/sem.2013.48.1.125.
  30. Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the Generalized Finite Element Method", Comput. Methods Appl. Mech. Eng., 181, 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9.
  31. Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Comput. Methods Appl. Mech. Eng., 190, 4081-4193. https://doi.org/10.1016/S0045-7825(99)00072-9.
  32. Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Methods Appl. Mech. Eng., 195, 4768-4782. https://doi.org/10.1016/j.cma.2005.06.030.
  33. To, C.W.S. and Liu, M.L. (1994), "Hybrid strain based three-node flat triangular shell elements", Finite Elem. Anal. Des., 17, 169-203. https://doi.org/10.1016/0168-874X(94)90080-9.
  34. Xu, J.P. and Rajendran, S. (2013), "A 'FE-Meshfree' TRIA3 element based on partition of unity for linear and geometry nonlinear analyses", Comput. Mech., 51, 843-864. https://doi.org/10.1007/s00466-012-0762-2.
  35. Yang, Y., Chen, L., Tang, X., Zheng, H. and Liu, Q. (2017), "A partition-of-unity based 'FE-Meshfree' hexahedral element with continuous nodal stress", Comput. Struct., 178, 17-28. https://doi.org/10.1016/j.compstruc.2016.10.012.
  36. Zhang, B.R. and Rajendran, S. (2008), "'FE-Meshfree' QUAD4 element for free-vibration analysis", Comput. Methods Appl. Mech. Eng., 197, 3595-3604. https://doi.org/10.1016/j.cma.2008.02.012.
  37. Zheng, H. and Xu, D. (2014), "New strategies for some issues of numerical manifold method in simulation of crack propagation", Int. J. Numer. Methods Eng., 97, 986-1010. https://doi.org/10.1002/nme.4620.