References
- Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4%3C727::AID-NME86%3E3.0.CO;2-N.
- Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, Higher Education Press, China.
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Methods Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312.
- Bathe, K.J., Iosilevich, A. and Chapelle, D. (2000), "An inf-sup test for shell finite elements", Comput. Struct., 75, 439-456. https://doi.org/10.1016/S0045-7949(99)00213-8.
- Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2.
- Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one point quadrature", Comput. Methods Appl. Mech. Eng., 113, 321-350. https://doi.org/10.1016/0045-7825(94)90052-3.
- Belytschko, T., Gracie, R. and Ventura, G. (2009), "A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. Sci. Eng., 17. https://doi.org/10.1088/0965-0393/17/4/043001.
- Cai, Y., Zhuang, X. and Augarde, C. (2010), "A new partition of unity finite element free from the linear dependence problem and possessing the delta property", Comput. Methods Appl. Mech. Eng., 199, 1036-1043. https://doi.org/10.1016/j.cma.2009.11.019.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New Jersey, USA.
- Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three-dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4.
- Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Methods Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4.
- Hiller, J.F. and Bathe, K.J. (2003), "Measuring convergence of mixed finite element discretizations: an application to shell structures", Comput. Struct., 81, 639-654. https://doi.org/10.1016/S0045-7949(03)00010-5.
- Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, MA, USA.
- Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003.
- Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004.
- Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Methods Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.
- Jun, H., Mukai, P. and Kim, S. (2018), "Benchmark tests of MITC triangular shell elements", Struct. Eng. Mech., 68, 17-38. https://doi.org/10.12989/sem.2018.68.1.017.
- Katili, A.M., Maknun, I.J. and Katili, I. (2019), "Theoretical equivalence and numerical performance of T3ys and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004.
- Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29, 203-221. https://doi.org/10.12989/sem.2008.29.2.203.
- Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
- Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164. https://doi.org/10.1016/j.compstruc.2015.02.033.
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Methods Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0.
- Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X.
- Oden, J.T., Duarte, C.A.M. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X.
- Rajendran, S. and Zhang, B.R. (2007), "A "FE-meshfree" QUAD4 element based on partition of unity", Comput. Methods Appl. Mech. Eng., 197, 128-147. https://doi.org/10.1016/j.cma.2007.07.010.
- Schenk, O. and Gartner, K. (2004), "Solving unsymmetric sparse systems of linear equations with PARDISO", Future Gener. Comput. Syst., 20, 475-487. https://doi.org/10.1016/j.future.2003.07.011.
- Shi, G.H. (1991), "Manifold method of material analysis", Transactions of the 9th army conference on applied mathematics and computing, Report No. 92-1, US Army Research Office, USA.
- Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., 48, 125-150. https://doi.org/10.12989/sem.2013.48.1.125.
- Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the Generalized Finite Element Method", Comput. Methods Appl. Mech. Eng., 181, 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9.
- Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Comput. Methods Appl. Mech. Eng., 190, 4081-4193. https://doi.org/10.1016/S0045-7825(99)00072-9.
- Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Methods Appl. Mech. Eng., 195, 4768-4782. https://doi.org/10.1016/j.cma.2005.06.030.
- To, C.W.S. and Liu, M.L. (1994), "Hybrid strain based three-node flat triangular shell elements", Finite Elem. Anal. Des., 17, 169-203. https://doi.org/10.1016/0168-874X(94)90080-9.
- Xu, J.P. and Rajendran, S. (2013), "A 'FE-Meshfree' TRIA3 element based on partition of unity for linear and geometry nonlinear analyses", Comput. Mech., 51, 843-864. https://doi.org/10.1007/s00466-012-0762-2.
- Yang, Y., Chen, L., Tang, X., Zheng, H. and Liu, Q. (2017), "A partition-of-unity based 'FE-Meshfree' hexahedral element with continuous nodal stress", Comput. Struct., 178, 17-28. https://doi.org/10.1016/j.compstruc.2016.10.012.
- Zhang, B.R. and Rajendran, S. (2008), "'FE-Meshfree' QUAD4 element for free-vibration analysis", Comput. Methods Appl. Mech. Eng., 197, 3595-3604. https://doi.org/10.1016/j.cma.2008.02.012.
- Zheng, H. and Xu, D. (2014), "New strategies for some issues of numerical manifold method in simulation of crack propagation", Int. J. Numer. Methods Eng., 97, 986-1010. https://doi.org/10.1002/nme.4620.