참고문헌
- Abdoun, T.H., Ha, D., O'Rourke, M., Symans, M., O'Rourke, T., Palmer, M. and Harry, E. (2009), "Factors influencing the behavior of buried pipelines subjected to earthquake faulting", Soil Dyn. Earthq. Eng., 29, 415-427. https://doi.org/10.1016/j.soildyn.2008.04.006.
- Alijani, F. and Amabili, M. (2014), "Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells", Compos. Struct., 108, 951-962. https://doi.org/10.1016/j.compstruct.2013.10.029.
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge.
- Benjamin, T.B. (1961), "Dynamics of a system of articulated pipes conveying fluid", Proc. Royal Soc. A., 261(130), 457-486. https://doi.org/10.1098/rspa.1961.0090.
- Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, Mc-Graw Hill.
- Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4.
- Chen, W., Shih, B.J., Chen, Y.C., Hung, J.H. and Hwang, H.H. (2002), "Seismic response of natural gas and water pipelines in the Ji-Ji earthquake", Soil Dyn. Earthq. Eng., 22, 1209-1214. https://doi.org/10.1016/S0267-7261(02)00149-5.
-
Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and Chipara, M. (2013), "Investigation of polymeric composite films using modified
$TiO_2$ nanoparticles for organic light emitting diodes", J. Current Nanosci., 9, 14-20. https://doi.org/10.2174/157341313805118018. - Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018.
- Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
- Duc, N.D. (2014b), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", J. Compos. Struct., 102, 306-314. https://doi.org/10.1016/j.compstruct.2012.11.017.
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A/Solid., 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
- Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", J. Comput. Mater. Sci., 49, 194-198. https://doi.org/10.1016/j.commatsci.2010.04.016.
- Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect three-phase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009.
- Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mat. Struct., 25, 1157-1167. https://doi.org/10.1080/15376494.2017.1341581.
- Duc, N.D., Quan, T.Q. and Nam, D. (2013), "Nonlinear stability analysis of imperfect three phase polymer composite plates", J. Mech. Compos. Mater., 49, 345-358. ttps://doi.org/10.1007/s11029-013-9352-4.
- Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
- Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E., 44, 17-24. https://doi.org/10.1016/j.physe.2011.06.024.
- GhorbanpourArani, A., Bagheri, M.R., Kolahchi, R. and KhodamiMaraghi, Z. (2013), "Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory", J. Mech. Sci. Tech., 27(9), 2645-2658. https://doi.org/10.1007/s12206-013-0709-3.
- Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77, 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3.
- Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019a), "Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution", Int. J. Mech. Mater. Des., 1-16. https://doi.org/10.1007/s10999-019-09465-x.
- Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019b), "Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT", Thin Wall. Struct., 144, 106254. https://doi.org/10.1016/j.tws.2019.106254.
- Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019c), "Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain", Eng. Comput. https://doi.org/10.1108/EC-02-2019-0075.
- Hajlaoui, A., Triki, E., Frikha, A., Wali, M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", Latin. Am. J. Solid. Struct., 14, 72-91. http://dx.doi.org/10.1590/1679-78253323.
- Housner, G.W. (1952), "Bending vibrations of a pipe line containing flowing fluid", J. Appl. Mech., 19, 205-208. https://doi.org/10.1115/1.4010447
- Huang, Y.M., Liu, Y.S., Li, B.H., Li, Y.J. and Yue, Z.F. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240(3), 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038.
- Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight", Struct., 18(1), 67-74. https://doi.org/10.1002/suco.201500048.
- JafarianArani, A and Kolahchi, R. (2016), "Buckling Analysis of embedded columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
- Kim, D.H., Lee, G.N., Lee, Y. and Lee, I.K. (2015), "Dynamic reliability analysis of offshore wind turbine support structure under earthquake", Wind Struct., 21, 609-623. https://doi.org/10.12989/was.2015.21.6.609.
- Kolahchi, R., RabaniBidgoli, M., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
- Lam, K.Y., Zong, Z. and Wang, Q.X. (2003), "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock", Compos. Part B-Eng., 34, 59-66. https://doi.org/10.1016/S1359-8368(02)00072-0.
- Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6.
- Lin, W. and Qiao, N. (2008), "Vibration and stability of an axially moving beam immersed in fluid", Int. J. Solid. Struct., 45, 1445-1457. https://doi.org/10.1016/j.ijsolstr.2007.10.015.
- Liu, X., Zhang, H., Gu X., Chen, Y., Xia, M. and Wu, K. (2017), "Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults", Earthq. Struct., 12, 321-332. https://doi.org/10.12989/eas.2017.12.3.321.
- Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluid., 56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003.
-
Mohammadian, H., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Dynamic response of beams reinforced by
$Fe_2O_3$ nanoparticles subjected to magnetic field and earthquake load", Earthq. Struct., 13, 589-598. https://doi.org/10.12989/eas.2017.13.6.589. - Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
- Motezaker, M. and Kolahchi, R. (2017), "Seismic response of CNT nanoparticles-reinforced pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
- Nogueira, A.C. (2012), "Rationally modeling collapse due to bending and external pressure in pipelines", Earthq. Struct., 3, 473-494. https://doi.org/10.12989/eas.2012.3.3_4.473.
- Paidoussis, M.P. and Issid, N.T. (1974), "Dynamic stability of pipes conveying fluid", J. Sound Vib., 33, 267-294. https://doi.org/10.1016/S0022-460X(74)80002-7.
- RabaniBidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of CNT nanoparticles reinforced columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/cac.2017.20.2.119.
- RabaniBidgoli, M., Karimi, M.S. and GhorbanpourArani, A. (2016), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23(7), 819-831. https://doi.org/10.1080/15376494.2015.1029170.
- Ray, M.C. and Reddy, J.N. (2013), "Active damping of laminated cylindrical shells conveying fluid using 1-3 piezoelectric composites", Compos. Struct., 98, 261-271. https://doi.org/10.1016/j.compstruct.2012.09.051.
- Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T. (2013), "Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs", Compos. Struct., 100, 40-54. https://doi.org/10.1016/j.compstruct.2012.12.019.
-
Sharifi, M., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Dynamic analysis of beams reinforced with
$Tio_2$ nano particles under earthquake load", Wind Struct., 26, 1-9. https://doi.org/10.12989/was.2018.26.1.001. - Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.
- Su, Y., Li, J., Wu, C and Li, Z.X. (2016), "Influences of nano-particles on dynamic strength of ultra-high performance", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.
- Thinh, T.I. and Nguyen, M.C. (2016), "Dynamic stiffness method for free vibration of composite cylindrical shells containing fluid", Appl. Math. Model., 40, 9286-9301. https://doi.org/10.1016/j.apm.2016.06.015.
- Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006.
- ZamaniNouri, A. (2017), "Mathematical modeling of pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325.
- Zhai, H., Wu, Z., Liu, Y. and Yue, Z. (2011), "Dynamic response of pipeline conveying fluid to random excitation", Nucl. Eng. Des., 241, 2744-2749. https://doi.org/10.1016/j.nucengdes.2011.06.024.
- Zhou, X.Q., YU, D.Y., Shao, X.Y., Zhang, C.Y. and Wang, S. (2017), "Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline", Compos. Part B-Eng., 111, 387-408. https://doi.org/10.1016/j.compositesb.2016.11.059.