DOI QR코드

DOI QR Code

An innovative CAD-based simulation of ball-end milling in microscale

  • Vakondios, Dimitrios G. (Department of Product & System Design Engineering, University of the Aegean) ;
  • Kyratsis, Panagiotis (Department of Industrial Design Engineering, University of Western Macedonia)
  • Received : 2019.05.04
  • Accepted : 2019.09.26
  • Published : 2020.01.25

Abstract

As small size and complex metal machining components demand increases, cutting processes in microscale become necessary. Ball-end milling is a commonly used finishing process, which nowadays can be applied in the microscale size. Surface quality and dimensional accuracy are two basic parameters that affect small size components in their assembly and functionality. Thus, good quality can be achieved by optimizing the cutting conditions of the procedure. This study presents a 3D simulation model of ball-end milling in microscale developed in a commercial CAD software and its optical and computing results. These carried out results are resumed to surface topomorphy, surface roughness, chip geometry and cutting forces calculations that arising during the cutting process. A great number of simulations were performed in a milling machine centre, applying the discretized kinematics of the procedure and the final results were compared with measurements of Al7075-T651 experiments.

Keywords

Acknowledgement

Supported by : Technical University of Crete

References

  1. Aurich, J.C., Bohley, M., Reichenbach, I.G. and Kirsch, B. (2017) "Surface quality in micro milling: Influences of spindle and cutting parameters", CIRP Annals, 66, 101-104. https://doi.org/10.1016/j.cirp.2017.04.029
  2. Baburaj, M., Ghosh, A. and Shunmugam, M.S. (2017), "Study of micro ball end mill geometry and measurement of cutting edge radius", Precision Engineering, 48, 9-17. https://doi.org/10.1016/j.precisioneng.2016.10.008.
  3. Baburaj, M., Ghosh, A. and Shunmugam, M.S. (2018), "Experimental and theoretical investigation on cutting forces in off-centre micro ball end milling", CIRP J. Manufacture. Sci. Technol., 23, 108-117. https://doi.org/10.1016/j.cirpj.2018.07.003
  4. Cai, Y., Liu, Z., Shi, Z., Song, Q. and Wan, Y. (2016), "Influence of machined surface roughness on thrust performance of micro-nozzle manufactured by micro-milling", Exp. Thermal Fluid Sci., 77, 295-305. https://doi.org/10.1016/j.expthermflusci.2016.05.004
  5. Chen, N., Chen, M., Wu, C. and Pei, X. (2017), "Cutting surface quality analysis in micro ball end-milling of KDP crystal considering size effect and minimum undeformed chip thickness", Precision Eng., 50, 410-420. https://doi.org/10.1016/j.precisioneng.2017.06.015
  6. Chen, W., Huo, D., Teng, X. and Sun, Y. (2017), "Surface Generation Modelling for Micro end Milling Considering the Minimum Chip Thickness and Tool Runout", Procedia CIRP 2017, 58, 364-369. https://doi.org/10.1016/j.procir.2017.03.237
  7. Chen, W., Zheng, L., Xie, W., Yang, K. and Huo, D. (2019), "Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling", J. Mater. Process Technol., 266, 339-350. https://doi.org/10.1016/j.jmatprotec.2018.11.011
  8. Eifler, M., Klauer, K., Kirsch, B., Seewig, J. and Aurich, J. C. (2018), "Micro-milling of areal material measures - influences on the resulting surface topography", Procedia CIRP, 71, 122-127. https://doi.org/10.1016/j.procir.2018.05.083
  9. Gadelmawla, E. S., Koura, M. M., Maksoud T. M. A., Elewa I. M. and Soliman H. H. (2002), "Rougness parameters", J. Mater. Process Technol., 123, 133-145. https://doi.org/10.1016/S0924-0136(02)00060-2
  10. Kienzle, O. and Victor, H. (1957). "Spezifische schnittkrafte bei der metallbearbeitung", Werkstattstechnik und Maschinenbau, 47, 224-225.
  11. Kuram, E. and Ozcelik, B. (2013), "Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill", Measurement, 46(6), 1849-1864. https://doi.org/10.1016/j.measurement.2013.02.002.
  12. Liu, Q., Cheng, J., Xiao, Y., Yang, H. and Chen, M. (2018) "Effect of milling modes on surface integrity of KDP crystal processed by micro ball-end milling", Procedia CIRP, 71, 260-266. https://doi.org/10.1016/j.procir.2018.05.060
  13. Luo, S., Jun, M. B. and Dong, Z. (2016), "Numerical simulation of chip ploughing volume and forces in 5-axis CNC micro-milling using flat-end mills", Procedia Manufacturing, 5, 348-361. https://doi.org/10.1016/j.promfg.2016.08.030
  14. Pratap, T. and Patra, K. (2018), "Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V", J. Mater. Process Technol., 262, 168-181. https://doi.org/10.1016/j.jmatprotec.2018.06.035
  15. Vehmeyer, J., Piotrowska-Kurczewski, I., Bohmermann, F., Riemer, O. and Maass, P. (2015), "Least-squares based parameter identification for a function-related surface optimisation in micro ball-end milling", Procedia CIRP, 31, 276-281. https://doi.org/10.1016/j.procir.2015.03.076
  16. Vyboishchik, A. V. (2016), "Modelling topology of freeform surfaces with ball-end milling", Procedia Engineering, 150, 761-767. https://doi.org/10.1016/j.proeng.2016.07.103
  17. Wang, Y., Zou, B., Wang, Z., Huang, C. and Liu, Z. (2018), "Analyzing the performance of self-developed cermet micro end mills in machining of TC4 alloy micro-grooves", Procedia CIRP, 71, 424-428. https://doi.org/10.1016/j.procir.2018.05.056
  18. Wojciechowski, S., Maruda, R. W., Krolczyk, G. M. and Nieslony, P. (2018), "Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling", Precision Eng., 51, 582-596. https://doi.org/10.1016/j.precisioneng.2017.10.014
  19. Wojciechowski, S., Wiackiewicz, M. and Krolczyk, G.M. (2018), "Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling", Measurement, 129, 686-694. https://doi.org/10.1016/j.measurement.2018.07.058
  20. Wojciechowski, S.; Mrozek, K. (2017) "Mechanical and technological aspects of micro ball end milling with various tool inclinations", J. Mech. Sci., 134, 424-435. https://doi.org/10.1016/j.ijmecsci.2017.10.032
  21. Xie, J., Li, Y. H. and Yang, L. F. (2015), "Study on 5-axial milling on microstructured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array", CIRP Annals, 64(1), 101-104. https://doi.org/10.1016/j.cirp.2015.04.075.
  22. Zhang, X., Zhang, J., Zheng, X., Pang, B. and Zhao, W. (2017), "Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model", CIRP J. Manufacture. Sci. Technol., 19, 106-116. https://doi.org/10.1016/j.cirpj.2017.06.003