References
- Aghababaei, R. and Reddy, J. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Andrews, E., Gioux, G., Onck, P. and Gibson, L. (2001), "Size effects in ductile cellular solids. Part II: experimental results", J. Mech. Sci., 43(3), 701-713. https://doi.org/10.1016/S0020-7403(00)00043-6.
- Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", J. Solids Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006.
- Atmane, H.A., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", J. Mech. Mater. Design, 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
- Barati, M.R. (2017), "On wave propagation in nanoporous materials", J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007.
- Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090.
- Duan, W., Wang, C. and Zhang, Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
- Ebrahimi, F. and Barati, M.R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66(2), 237-248. https://doi.org/10.12989/sem.2018.66.2.237.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
- Ghayesh, M.H. (2018), "Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity", IJ. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037.
- Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Applied Mathematical Modelling. 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
- Ghayesh, M.H. (2019), "Viscoelastic dynamics of axially FG microbeams", J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003.
- Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003.
- Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dynam., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7.
- Jin, G., Su, Z., Shi, S., Ye, T. and Gao, S. (2014), "Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.1142/S0219876216500158.
- Karami, B., Janghorban, M. and Rabczuk, T. (2019), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", European J. Mech. A/Solids. 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel and Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
- Karami, B., janghorban, M. and Tounsi, A. (2019), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018), "Wave dispersion of mounted graphene with initial stress", Thin Wall Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.
- Karami, B., Shahsavari, D. and Li, L. (2018), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E Low-dimensional Syst. Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020.
- Karami, B., Shahsavari, D. and Li, L. (2018), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stress., 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781.
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. Institution of Mech. Eng., Part C J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451.
- Khdeir, A. and Reddy, J. (1999), "Free vibrations of laminated composite plates using second-order shear deformation theory", Comput. Struct., 71(6), 617-626. https://doi.org/10.1016/S0045-7949(98)00301-0.
- Kneifati, M.C. (1985), "Analysis of plates on a Kerr foundation model", J. Eng. Mech., 111(11), 1325-1342. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325).
- Koh, S. and Lee, H. (2006), "Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires", Nanotechnology, 17(14), 3451. https://doi.org/10.1088/0957-4484/17/14/018.
- Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", IJ. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel and Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
- Mahapatra, T., Kar, V. and Panda, S. (2016), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", J. Struct. Stability Dynam., 16(03), 1450105. https://doi.org/10.1142/S0219455414501053.
- Mahapatra, T., Panda, S. and Kar, V. (2016), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", J. Mech. Mater. Design, 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.
- Mahapatra, T., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.
- Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stress., 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazilian Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
- Mehar, K. and Panda, S.K. (2016), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
- Mehar, K. and Panda, S.K. (2017), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", IJ. Mech. Sci.. 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", European. J. Mech. A/Solids., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", J. Appl. Mech., 9(04), 1750046. https://doi.org/10.1142/S1758825117500466.
- Miyamoto, Y., Kaysser, W., Rabin, B., Kawasaki, A. and Ford, R.G. (2013), Functionally graded materials: design, processing and applications, Springer Science & Business Medi, Germany.
- Mohammadi, H. and Mahzoon, M. (2014), "Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory", Iran. J. Sci. Technol. Transaction. Mech. Eng., 38(M2), 303.
- Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlinear Dynam., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x.
- Mousavi, S.M. (2016), "Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type-Part I: Antiplane analysis", J. Solids Struct., 87, 222-235. https://doi.org/10.1016/j.ijsolstr.2015.10.033.
- Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlattices Microstruct., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.
- Rad, A.B. and Shariyat, M. (2015), "Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations", Compos. Struct., 125, 558-574. https://doi.org/10.1016/j.compstruct.2015.02.049.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", IJ. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", J. Eng. Sci., 120 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
- Shen, L., Shen, H.-S. and Zhang, C.-L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48(3), 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
- Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034.
- Thai, H.-T., Vo, T.P., Nguyen, T.-K. and Kim, S.-E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Physics A., 123(6), 388. https://doi.org/10.1007/s00339-017-1007-1.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. Part B Eng., 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001.
Cited by
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
- Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189
- Hygro-thermal buckling of porous FG nanobeams considering surface effects vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.359