References
- AISC-LRFD (2001), Manual of Steel Construction-Load and Resistance Factor Design. American Institute of Steel Construction, Chicago, USA.
- ASCE 7-05 (2005), Minimum Design Loads for Building and Other Structures, New York, USA.
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/ 10.12989/ scs. 2015.19.2.503.
- Artar, M. (2016), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., 58(3), 597-612. https://doi.org/10.12989/sem.2016.58.3.597.
- Artar, M. and Daloglu, A.T. (2019), "Optimum design of steel space truss towers under seismic effect using Jaya algorithm", Struct. Eng. Mech., 71(1),1-12. https://doi.org/10.12989/sem.2019.71.1.001.
- Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029.
- Aydogdu, I. (2017), "Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights", Eng. Optimiz. 49(3), 381-400. https://doi.org/10.1080/0305215X.2016.1191837.
- Aydogdu, I., Efe, P. Yetkin, M. and Akin., A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., 62(3), 259-272. https://doi.org/10.12989/sem.2017.62.3.259.
- Aydogdu, I, Carbas, S. and Akin., A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
- Aydogdu I. (2010), Optimum design of 3-d irregular steel frames using ant colony optimization and harmony search algorithms. Ph.D. Dissertation, Middle East Technical University, Ankara, Turkey.
- Carbas S. (2016), "Design optimization of steel frames using an enhanced firefly algorithm", Eng. Optimiz., 48(12), 2007-2025. https://doi.org/10.1080/0305215X.2016.1145217.
- Carbas, S. (2017), "Optimum structural design of spatial steel frames via biogeography-based optimization", Neural Comput. Appl., 28(6),1525-1539. https://doi.org/10.1007/s00521-015-2167-6.
- Daloglu, A.T, Artar, M., Ozgan, K. and Karakas A.I. (2016), "Optimum design of steel space frames including soil-structure interaction", Struct. Multidiscip. O., 54(1), 117-131. https://doi.org/10.1007/s00158-016-1401-x.
- Daloglu, A., Artar, M., Ozgan K. and Karakas, A.I. (2015), "Optimum design of space steel frames on elastic ground with GA" XIX. National Mechanical Congress, Karadeniz Technical University, Trabzon, Turkey, August.
- Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163.
- Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidiscip. O., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4.
- Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S. (2008), "Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm", Eng. Struct., 30(1), 197-205. https://doi.org/10.1016/j.engstruct.2007.03.014.
- Degertekin, S.O., Hayalioglu, M.S. and Ulker, M. (2008), "A hybrid-tabu simulated annealing heuristic algirthm for optimum design of steel frames", Steel Compos. Struct., 8(6), 475-490. https://doi.org/10.12989/scs.2008.8.6.475.
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidiscip. O., 42(5), 755-768.https://doi.org/10.1007/s00158-010-0533-7.
- Degertekin, S.O., Lamberti L. and Ugur I.B. (2017), "Discrete and continuous design optimization of tower structures using the Jaya algorithm", ICADET'17, 2. International Conference on Advanced Engineering Technologies Bayburt, Turkey, September.
- Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75(2), 209-224. https://doi.org/ 10.1016/S0045-7949(99)00084-X.
- Esen, Y. and Ulker, M. (2008), "Optimization of multi storey space steel frames, materially and geometrically properties non-linear", J. Fac. Eng. Arch. Gazi Univ., 23(2), 485-494.
- Grzywinski, M., Dede, T. and Ozdemir, Y.I. (2019), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047.
- Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., Int. J., 50(3), 323-347.https://doi.org/10.12989/sem.2014.50.3.323.
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009) "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87(5-6), 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002.
- Hasancebi, O. and Carbas, S. (2014) "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67, 173-185.https://doi.org/10.1016/j.advengsoft.2013.10.003.
- Hayalioglu, M.S. and Degertekin, S.O. (2004), "Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections", Steel Compos. Struct., 4(6), 453-469. https://doi.org/10.12989/scs.2004.4.6.453
- Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863.https://doi.org/10.1016/j.compstruc.2005.02.009.
- Kameshki, E.S. and Saka, M.P. (2001), "Genetic algorithm based optimum bracing design of non-swaying tall plane frames", J. Constr. Steel Res., 57(10), 1081-1097. https://doi.org/10.1016/S0143-974X(01)00017-7.
- Karakas, A.I., Artar, M. Ozgan, K. and Daloglu, A.T. (2016), Optimum design of space truss bridges including soil-structure interaction, ICENS, International Conference on Engineering and Natural Sciences, Sarajevo, May.
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797.https://doi.org/10.12989/sem.2012.42.6.783.
- Kelesoglu, O., and Ulker, M. (2005), "Multi-objective fuzzy optimization of space trusses by Ms-Excel", Adv. Eng. Softw., 36(8), 549-553.https://doi.org/10.1016/j.advengsoft.2005.02.001.
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.
- MATLAB (2009), The Language of Technical Computing. The Mathworks, Natick, MA, U.S.A.
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431.
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
- Rao, R.V. and Patel, V. (2013), "An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems", Scientia Iranica, 20(3), 710-720. https://doi.org/10.1016/j.scient.2012.12.005.
- Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", J. Industrial Eng. Comput., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
- Rao, R.V., More, K.C., Taler, J. and Oclon., P. (2016), "Dimensional optimization of a micro-channel heat sink using Jaya algorithm", Appl. Therm. Eng., 103, 572-582. https://doi.org/10.1016/j.applthermaleng.2016.04.135.
- Rao, R.V., Rai, D.P. and Balic, J. (2016), "Surface grinding process optimization using Jaya Algorithm", Comput. Intelligence Data Mining, 2, 487-495. https://doi.org/10.1007/978-81-322-2731-1_46.
- Rao, R.V., and More, K.C. (2017), "Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm", Energy Conversion Management, 140, 24-35. https://doi.org/10.1016/j.enconman.2017.02.068.
- Rao, R.V. (2020), "Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems", J. Industrial Eng. Comput., 11(1), 107-130. https://doi.org/ 10.5267/j.ijiec.2019.6.002.
- Saka, M.P. and Geem, Z.W. (2013), "Mathematical and Metaheuristic applications in design optimization of steel frame structures: an extensive review", Math. Problems Eng., 2013, 1- 33. https://doi.org/10.1155/2013/271031.
- SAP2000. 2008. Integrated finite elements analysis and design of structures. Computers and Structures, Inc. Berkeley.
- Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
- Shallan, O., Maaly, H.M. and Hamdy, O. (2018), "A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms", Struct. Eng. Mech., 66(2), 173-183. https://doi.org/10.12989/sem.2018.66.2.173.
- Togan, V. and Daloglu, A.T. (2006), "Optimization of 3d trusses with adaptive approach in genetic algorithms", Eng. Struct., 28(7), 1019-1027.https://doi.org/10.1016/j.engstruct.2005.11.007
- Togan, V. and Daloglu, A.T. (2008), "An improved genetic algorithm with initial population strategy and self-adaptive member grouping", Comput. Struct., 86(11-12): 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006.
- Togan, V., Daloglu, A.T. and Karadeniz, H. (2011), "Optimization of trusses under uncertainties with harmony search", Struct. Eng. Mech., 37(5), 543-560. https://doi.org/10.12989/sem.2011.37.5.543.
- Togan, V. (2012), "Design of planar steel frames using teaching- learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035.
- Topal, U., Trung, V.D., Dede, T. and Nazarimofrad, E. (2018), "Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO", Struct. Eng. Mech., 67(6), 617-628. https://doi.org/10.12989/sem.2018.67.6.617.
Cited by
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795