과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Beijing Postdoctoral Research Foundation
참고문헌
- Araki, Y., Maekawa, N., Shrestha, K.C., Yamakawa, M., Koetaka, Y., Omori, T. and Kainuma, R. (2014), "Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars", Struct. Control Health Monitor., 21(10), 1304-1315. https://doi.org/10.1002/stc.1644
- Bartera, F. and Giacchetti, R. (2004), "Steel dissipating braces for upgrading existing building frames", J. Constr. Steel Res., 60(3-5), 751-769. https://doi.org/10.1016/s0143-974x(03)00141-x
- Bhaskararao, A.V. and Jangid, R.S. (2006), "Seismic analysis of structures connected with friction dampers", Eng. Struct., 28(5), 690-703. https://doi.org/10.1016/j.engstruct.2005.09.020
- Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces", ASCE J. Struct. Eng., 130(6), 880-894. https://doi.org/10.1061/(asce)0733-9445(2004)130:6(880)
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., Int. J., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, S. and Marzi, A. (2011), "Fatigue tests on SMA bars in span control", Eng. Struct., 33(4), 1232-1239. https://doi.org/10.1016/j.engstruct.2010.12.045
- Casciati, S., Faravelli, L. and Vece, M. (2017), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monitor., 24(1), e1855. https://doi.org/10.1002/stc.1855
- Chinese Standard (2003), Code for design of steel structure GB50017, Ministry of Construction of China; Beijing, China.
- Colajanni, P. and Papia, M. (1995), "Seismic response of braced frames with and without friction dampers", Eng. Struct., 17(2), 129-140. https://doi.org/10.1016/0141-0296(95)92644-n
- Cruz Noguez, C.A. and Saiidi, M.S. (2012), "Performance of advanced materials during earthquake loading tests of a bridge system", ASCE J. Struct. Eng., 139(1), 144-154. https://doi.org/10.1061/(asce)st.1943-541x.0000611
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", ASCE J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(asce)0733-9445(2004)130:1(38)
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::aideqe958>3.3.co;2-r.
- Fahnestock, L.A., Sause, R. and Ricles, J.M. (2007), "Seismic response and performance of buckling-restrained braced frames", ASCE J. Struct. Eng., 133(9), 1195-1204. https://doi.org/10.1061/(asce)0733-9445(2007)133:9(1195)
- Fang, C., Wang, W., He, C. and Chen, Y. (2017), "Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts", Eng. Struct., 150, 390-408. https://doi.org/10.1016/j.engstruct.2017.07.067
- Gall, K. and Sehitoglu, H. (1999), "The role of texture in tension-compression asymmetry in polycrystalline NiTi", Int. J. Plastic., 15(1), 69-92. https://doi.org/10.1016/s0749-6419(99)00020-0
- Graesser, E.J. and Cozzarelli, F.A. (1991), "Shape-memory alloys as new materials for aseismic isolation", ASCE J. Eng. Mech., 117(11), 2590-2608. https://doi.org/10.1061/(asce)0733-9399(1991)117:11(2590)
- Hou, H., Li, H., Qiu, C. and Zhang, Y. (2018), "Effect of hysteretic properties of SMAs on seismic behavior of self-centering concentrically braced frames", Struct. Control Health Monitor., 25(3), e2110. https://doi.org/10.1002/stc.2110
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
- Li, H., Mao, C.X. and Ou, J.P. (2008), "Experimental and theoretical study on two types of shape memory alloy devices", Earthq. Eng. Struct. Dyn., 37(3), 407-426. https://doi.org/10.1002/eqe.761
- Li, H.N., Huang, Z., Fu, X. and Li, G. (2018), "A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures", Struct. Control Health Monitor., 25(9), e2233. https://doi.org/10.1002/stc.2233
- Liu, Y., Xie, Z., Van Humbeeck, J. and Delaey, L. (1998), "A symmetry of stress-strain curves under tension and compression for NiTi shape memory alloys", Acta Materialia, 46(12), 4325-4338. https://doi.org/10.1016/s1359-6454(98)00112-8
- Liu, J.L., Zhu, S., Xu, Y.L. and Zhang, Y.F. (2011), "Displacement-based design approach for highway bridges with SMA isolators", Smart Struct. Syst., Int. J., 8(2), 173-190. https://doi.org/10.12989/sss.2011.8.2.173
- Ma, H. and Yam, M.C. (2011), "Modelling of a self-centring damper and its application in structural control", J. Constr. Steel Res., 67(4), 656-666. https://doi.org/10.1016/j.jcsr.2010.11.014
- Min, K.W., Kim, J. and Lee, S.H. (2004), "Vibration tests of 5-storey steel frame with viscoelastic dampers", Eng. Struct., 26(6), 831-839. https://doi.org/10.1016/j.engstruct.2004.02.004
- Mualla, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/s0141-0296(01)00102-x
- Qiu, C. and Zhao, X. (2018), "Temperature effect on seismic performance of CBFs equipped with SMA braces", Smart Struct. Syst., Int. J., 22(5), 495-508. https://doi.org/10.12989/sss.2018.22.5.495
- Qiu, C. and Zhu, S. (2014), "Characterization of cyclic properties of superelastic monocrystalline Cu-Al-Be SMA wires for seismic applications", Constr. Build. Mater., 72, 219-230. https://doi.org/10.1016/j.conbuildmat.2014.08.065
- Qiu, C. and Zhu, S. (2016), "High-mode effects on seismic performance of multi-story self-centering braced steel frames", J. Constr. Steel Res., 119, 133-143. https://doi.org/10.1016/j.jcsr.2015.12.008
- Qiu, C. and Zhu, S. (2017a), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051
- Qiu, C. and Zhu, S. (2017b), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dyn., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
- Qiu, C., Zhang, Y., Qi, J. and Li, H. (2018), "Seismic behavior of properly designed CBFs equipped with NiTi SMA braces", Smart Struct. Syst., Int. J, 21(4), 479-491. https://doi.org/10.12989/sss.2018.21.4.479
- Roh, H. and Reinhorn, A.M. (2010), "Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars", Eng. Struct., 32(10), 3394-3403. https://doi.org/10.1016/j.engstruct.2010.07.013
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced frame buildings with buckling-restrained braces", Eng. Struct., 25(5), 655-666. https://doi.org/10.1016/s0141-0296(02)00175-x
- Samali, B. and Kwok, K.C.S. (1995), "Use of viscoelastic dampers in reducing wind-and earthquake-induced motion of building structures", Eng. Struct., 17(9), 639-654. https://doi.org/10.1016/0141-0296(95)00034-5
- Shrestha, K.C., Araki, Y., Nagae, T., Omori, T., Sutou, Y., Kainuma, R. and Ishida, K. (2013), "Effectiveness of superelastic bars for seismic rehabilitation of clay-unit masonry walls", Earthq. Eng. Struct. Dyn., 42(5), 725-741. https://doi.org/10.1002/eqe.2241
- Sommerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997), "Development of ground motion time histories for Phase 2 of the FEAM/SAC steel project SAC Background document SAC", BD-91/04, SAC joint venture, Sacramento, CA, USA.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York.
- Tian, L. and Qiu, C. (2018), "Controlling Residual Drift in BRBFs by Combining SCCBFs in Parallel", ASCE J. Perform. Constr. Facil., 32(4), 04018047. https://doi.org/10.1061/(asce)cf.1943-5509.0001191.
- Torra, V., Carreras, G., Casciati, S. and Terriault, P. (2014), "On the NiTi wires in dampers for stayed cables", Smart Struct. Syst., Int. J., 13(13), 1738-1584. https://doi.org/10.12989/sss.2014.13.3.353
- Tremblay, R., Lacerte, M. and Christopoulos, C. (2008), "Seismic response of multistory buildings with self-centering energy dissipative steel braces", ASCE J. Struct. Eng., 134(1), 108-120. https://doi.org/10.1061/(asce)0733-9445(2008)134:1(108)
- Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727
- Wang, B. and Zhu, S. (2018), "Cyclic tension-compression behavior of superelastic shape memory alloy bars with bucklingrestrained devices", Constr. Build. Mater., 186, 103-113. https://doi.org/10.1016/j.conbuildmat.2018.07.047
- Wang, W., Fang, C. and Liu, J. (2016), "Large size superelastic SMA bars: heat treatment strategy, mechanical property and seismic application", Smart Mater. Struct., 25(7), 075001. https://doi.org/10.1088/0964-1726/25/7/075001
- Wang, B., Zhu, S., Qiu, C. and Jin, H. (2019), "High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation", Eng. Struct., 182, 446-458. https://doi.org/10.1016/j.engstruct.2018.12.077
- Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644
- Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. https://doi.org/10.1016/s0141-0296(98)00097-2
- Xu, X., Tu, J., Cheng, G., Zheng, J. and Luo, Y. (2019), "Experimental study on self-centering link beams using posttensioned steel-SMA composite tendons", J. Constr. Steel Res., 155, 121-128. https://doi.org/10.1016/j.jcsr.2018.12.026
- Youssef, M.A., Alam, M.S. and Nehdi, M. (2008), "Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys", J. Earthq. Eng., 12(7), 1205-1222. https://doi.org/10.1080/13632460802003082
- Zhang, Y. and Zhu, S. (2007), "Shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation", Smart Mater. Struct., 16, 1603-1613. https://doi.org/10.1088/0964-1726/16/5/014
- Zhang, Y. and Zhu, S. (2008), "Seismic response control of building structures with superelastic shape memory alloy wire dampers", ASCE J. Eng. Mech., 134(3), 240-251. https://doi.org/10.1061/(asce)0733-9399(2008)134:3(240)
- Zhu, S. and Zhang, Y. (2007), "Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct. Dyn., 36(10), 1329-1346. https://doi.org/10.1002/eqe.683